

AWS re:Invent

DECEMBER 1 - 5, 2025 | LAS VEGAS, NV

Session: ANT213

Build GPU-boosted, auto-optimized billion-scale VectorDBs in hours

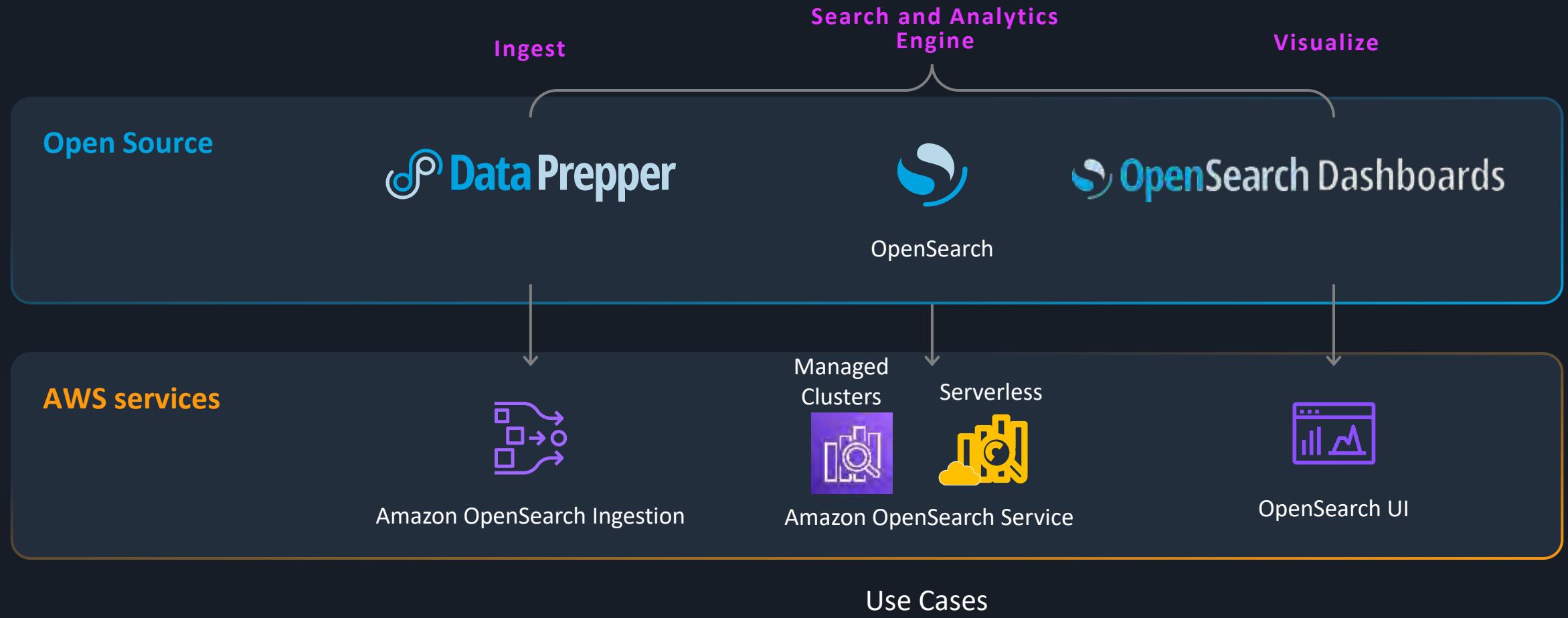
Dylan Tong

Product Lead, AI and vectors
Amazon OpenSearch Service
AWS

Vamshi Nakkirtha

Senior Manager, Software Dev, Vector Search
Amazon OpenSearch Service
AWS

OpenSearch: AWS and Open Source



Why Vector Search?

1

Improves search quality
(relevance)

2

Versatile support for
content types

3

Diverse
Use Cases

4

Agentic (AI) App
Enabler

Vector Search Journey

Feb. 2020

2021

2023

2024

2025

First Release

OpenSearch 1.0:
(Elastic 7.10 and
Apache Lucene Fork)

FAISS

Serverless
Amazon Bedrock KB
Hybrid Search
AI Native:
Vector Generation

Cost Optimizations:
Automated Quantization
Tiered Vector Storage
Disk-optimized Engine

AI Native:
AI enrichments

Cost Optimizations:
S3 Vectors Integration
Intel AVX-512
Graviton Neon
Storage Reduction

AI Native:
Search AI and Agentic Flows
Automatic Semantic
Enrichment
MCP Server Integration

Empower Scale:
Managed Vector Ingestion
GPU-accelerated Vector
Indexing
Vector Auto-optimize

Customers trending to billion-scale and beyond

IP Infringement Detection

8 billion attempted changes to
product detail pages for signs of potential abuse
(2022)

68 Billion vectors encoded from
product information indexed into OpenSearch
to power vector search.

99% of discovered infringements were
automatically found or blocked through
proactive controls

Source: <https://aws.amazon.com/blogs/big-data/amazon-opensearch-services-vector-database-capabilities-explained/>

Agentic Application

AI teammate that **powers human and AI collaboration**.

Problem:

Silo data and tools across support, product and sales teams

Solution:

Unify, automate, search and insights via AI agents.

Hundreds millions of vectors with ~1M vector updates daily.

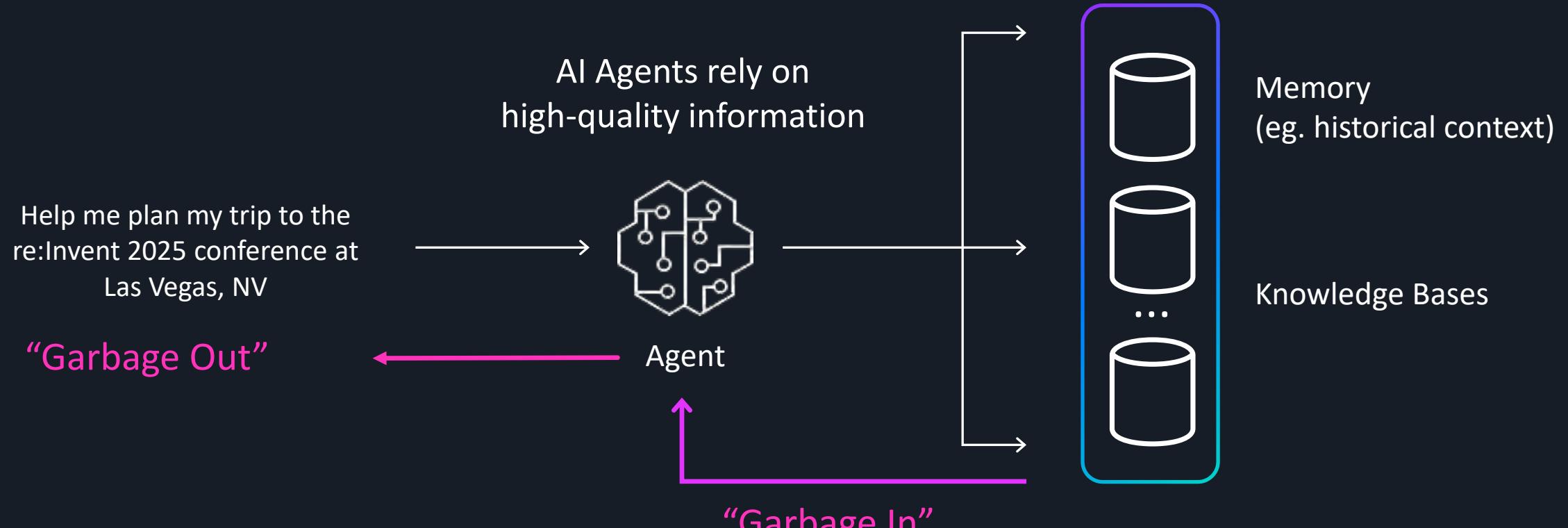
Results:

85% of tickets resolved with no human intervention,

50% cost reduction in customer support

10-hours saved per employee every week.

Agentic systems rely on high-quality search



Vector search and hybrid variations are state-of-the-art.

Keyword vs Semantic (Vector)

Compare results using the same search text with different queries. For more information, see the [Compare Search Results Documentation](#). To leave feedback, visit [forums.opensearch.com](#).

Search Search

Query 1

Index: flickr2_demo

Query:

```
1 "query": {  
2   "match": {  
3     "image_description_text": "%SearchText%"  
4   }  
5 },  
6   "_source": ["image_id", "image_description_text"]  
7 }  
8  
9
```

Enter a query in OpenSearch Query DSL. Use %SearchText% to refer to the text in the search bar.

Query 2

Index: flickr2_demo

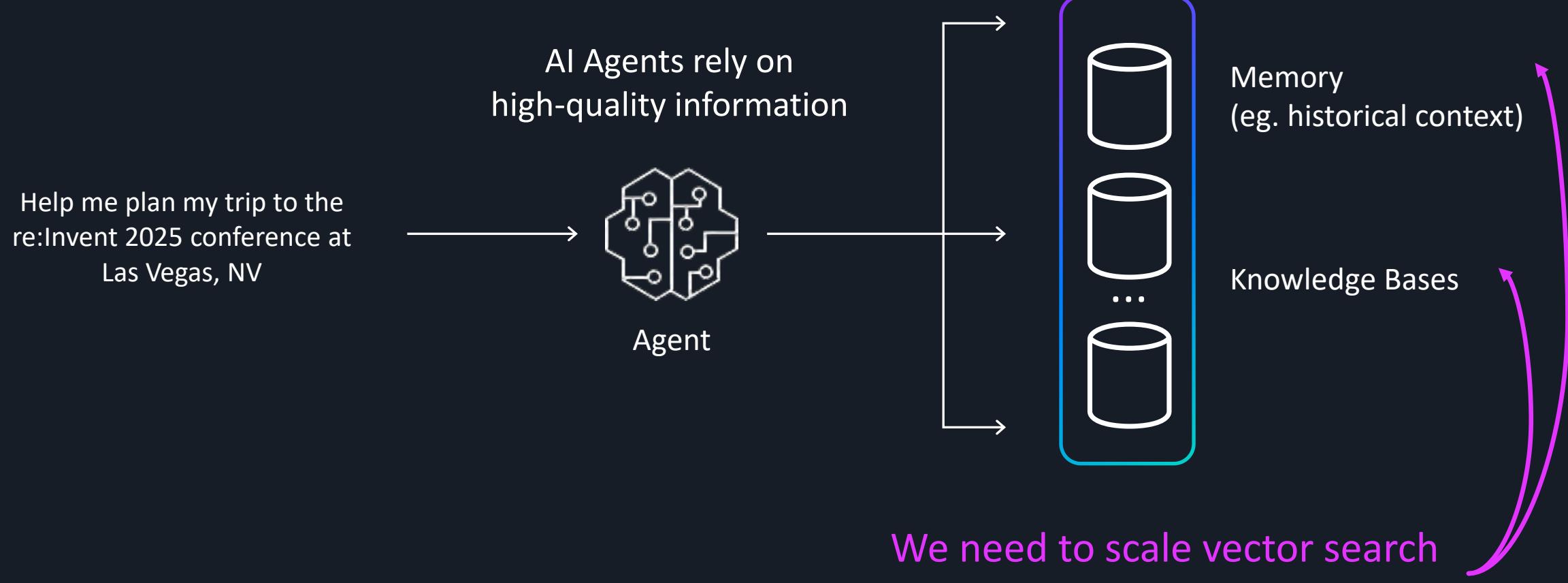
Query:

```
1 "neurus": 1  
2   "image_description_embedding_custom": {  
3     "query_text": "%SearchText%",  
4     "model_id": "F0NbeYQBj_MR0Khh8gnC"  
5   }  
6   }  
7 },  
8   "_source": ["image_description_text", "image_id"]  
9 }  
10  
11 }
```

Enter a query in OpenSearch Query DSL. Use %SearchText% to refer to the text in the search bar.

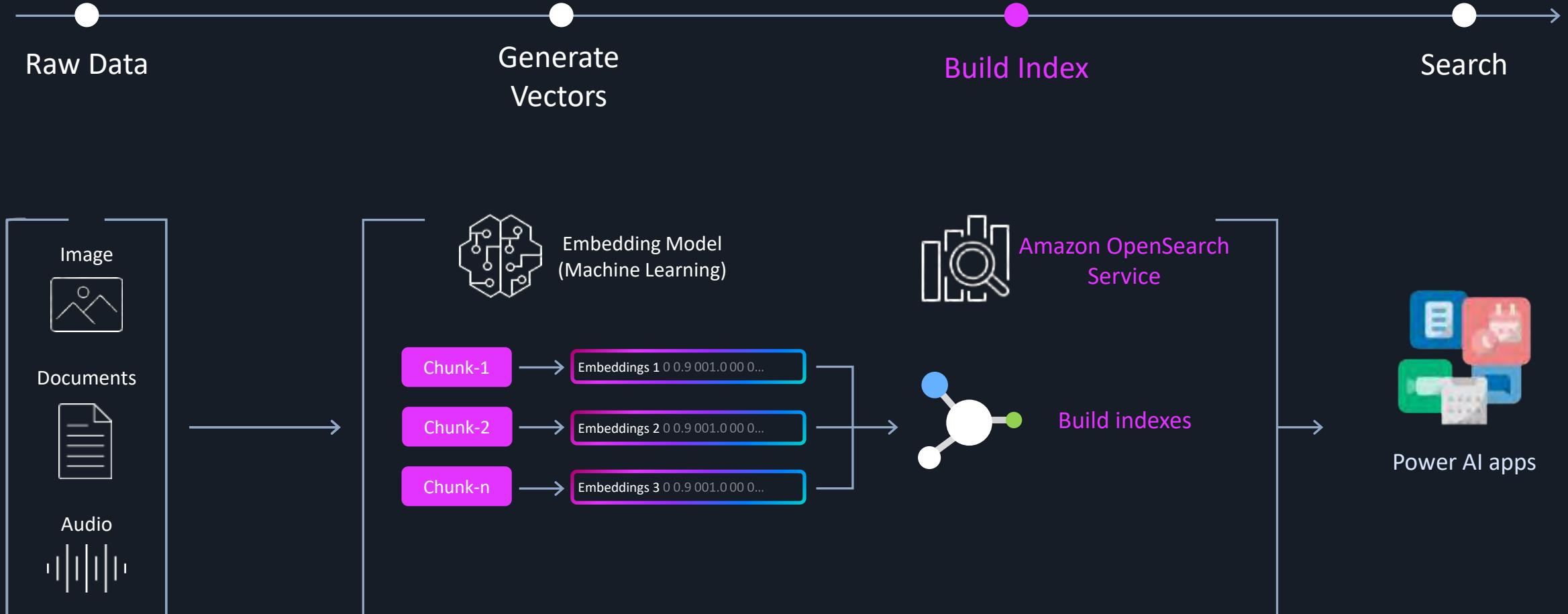
Add queries to compare search results.

Agentic systems need vector search across vast knowledge bases...

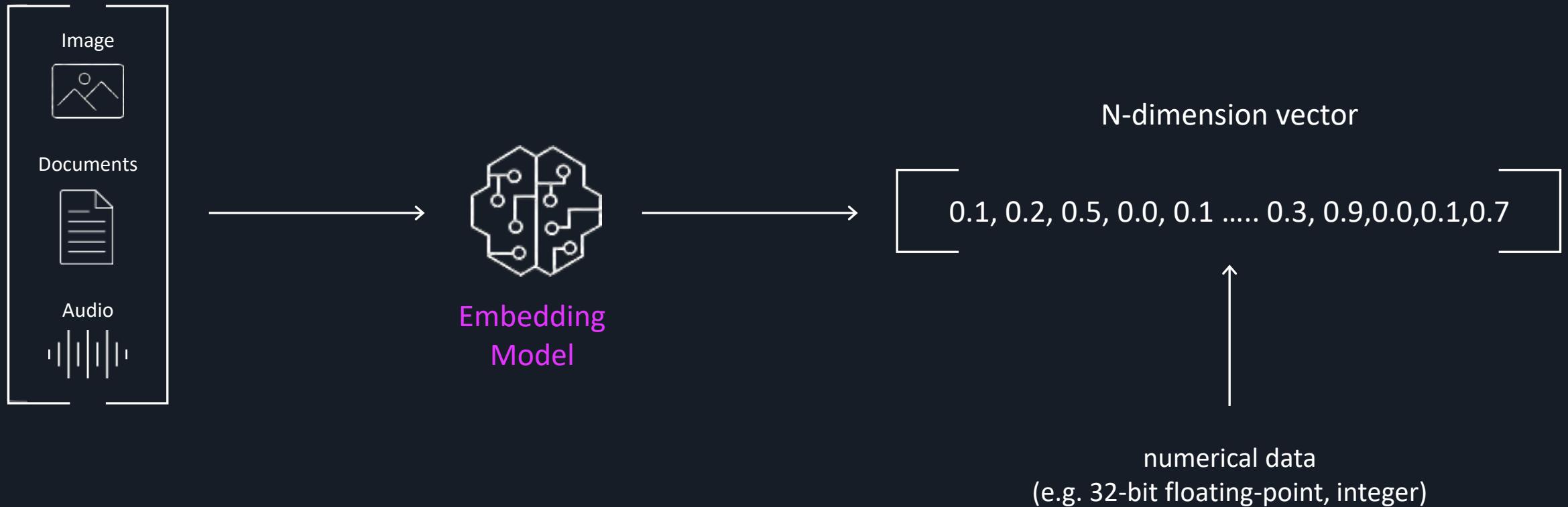


Big Vector Databases, Big Challenges

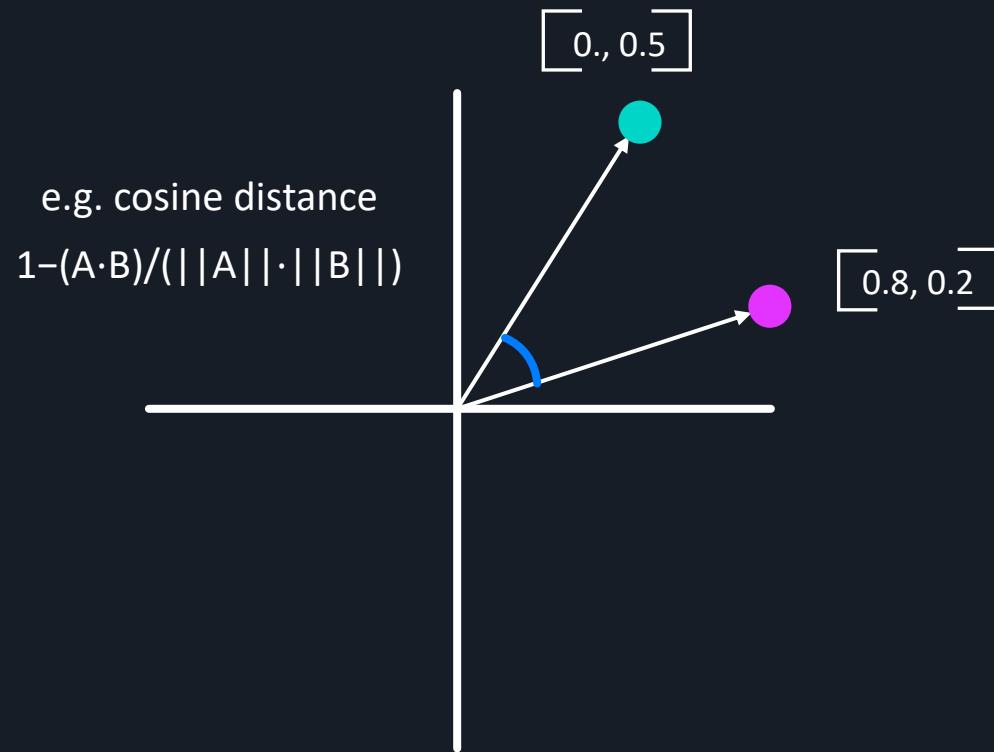
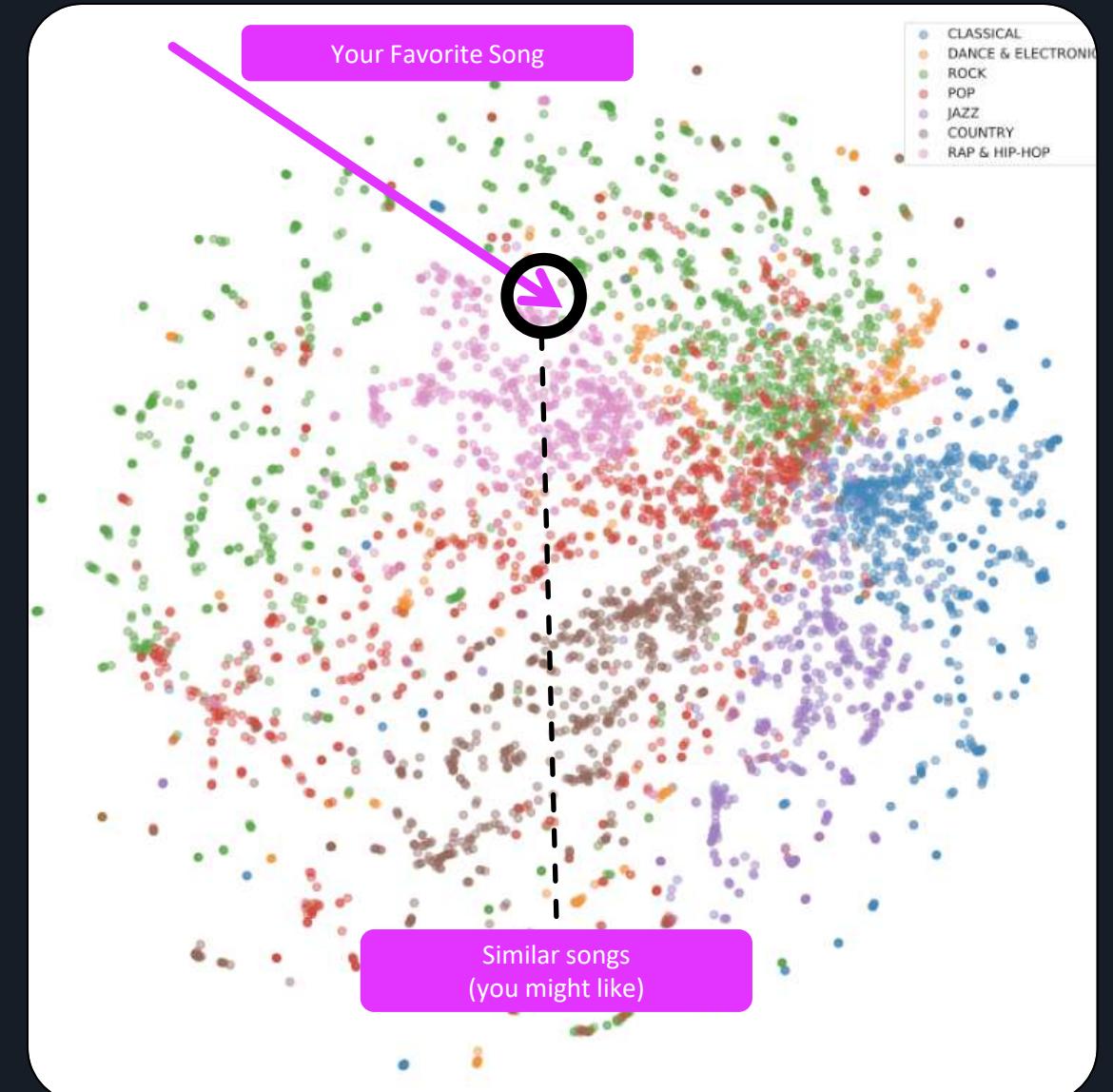
Building a Vector Database



Vectors



Content (Vector) Similarity



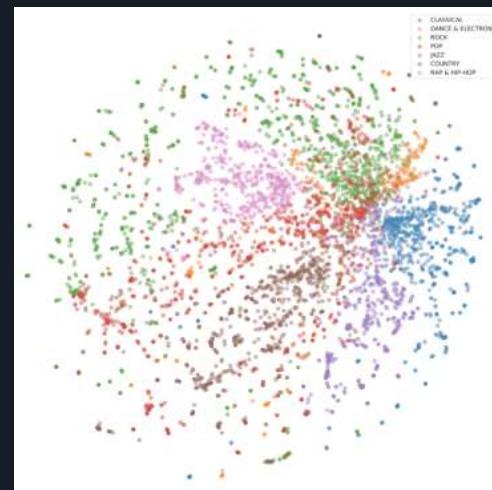
k-Nearest-Neighbors: Find the “Top K” most similar...

Exact (Brute-force) k-NN

query vector: $[0.1, 0.2, 0.6 \dots 0.3, 0.7]$
(e.g. your favorite song)

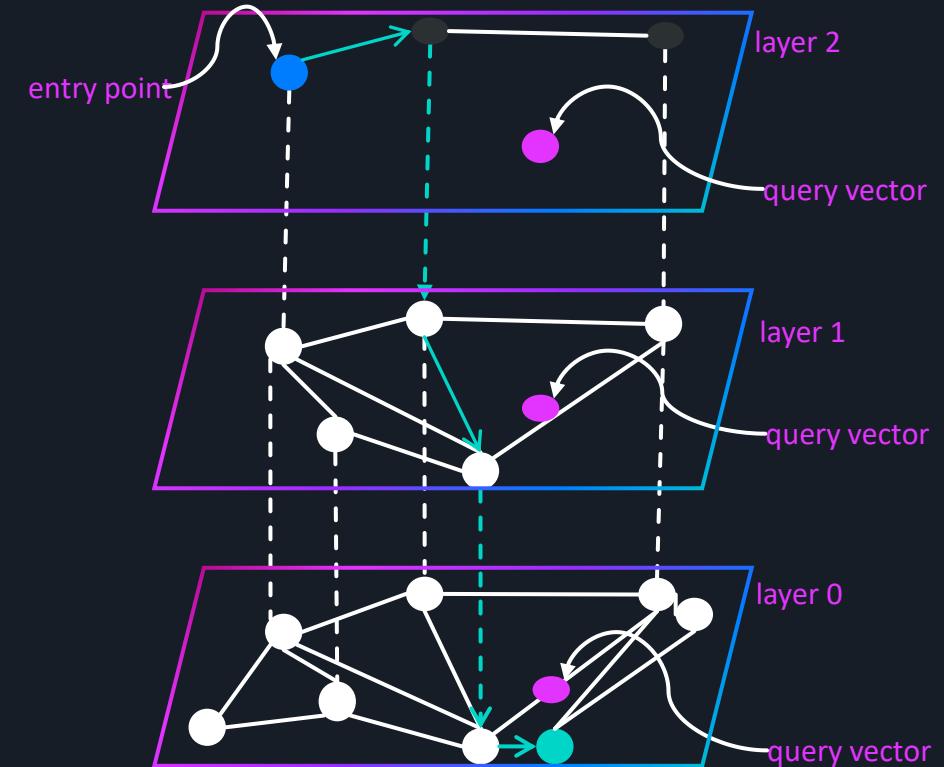
Calculate distance and rank

Song
vector
corpus



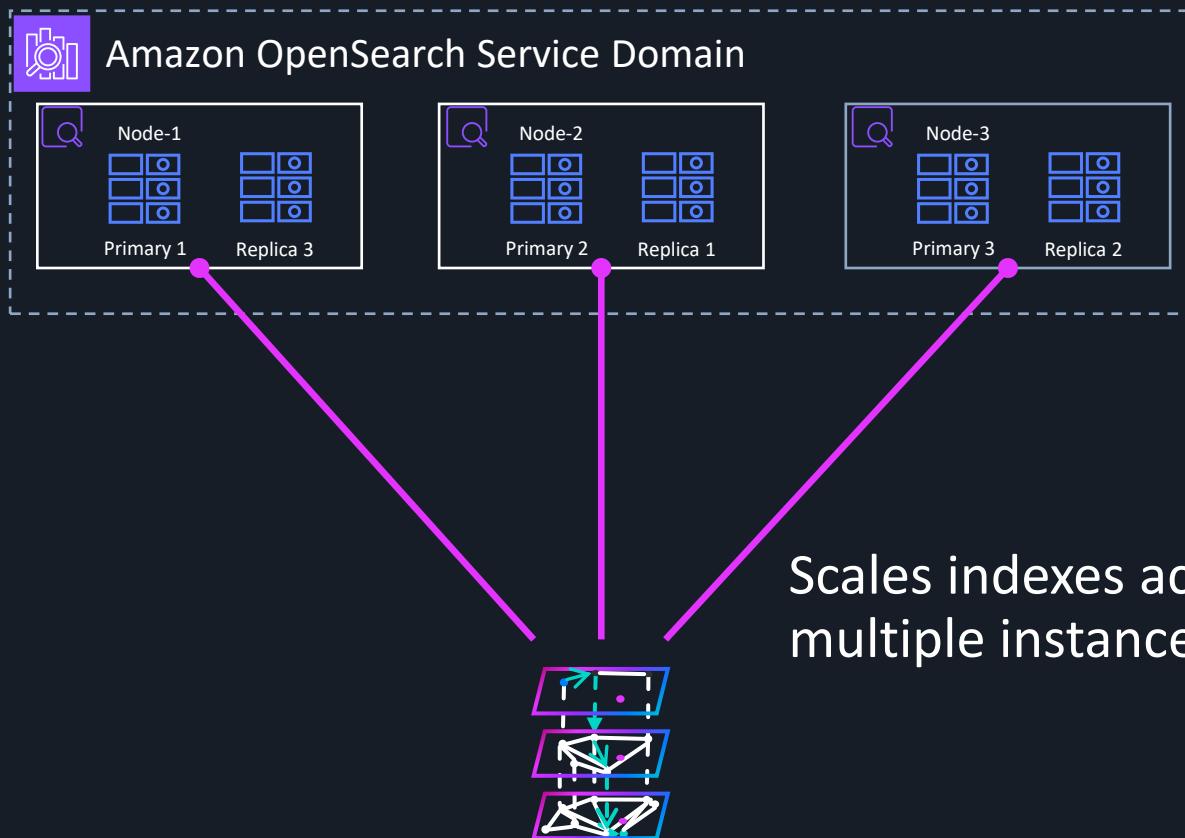
Approximated k-NN

Hierarchical Navigable Small Worlds (HNSW)

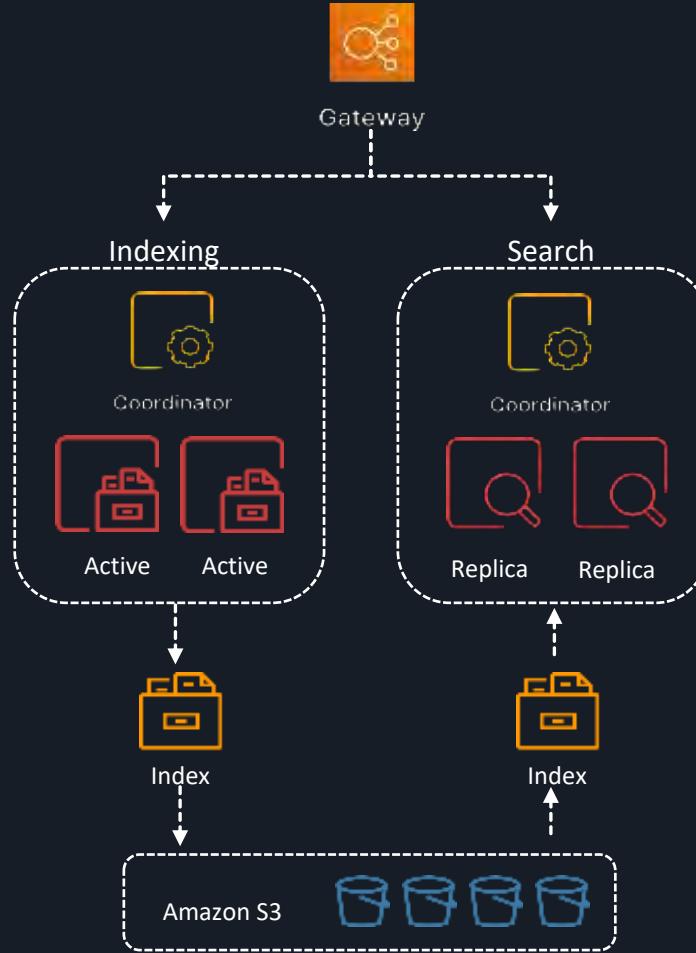


Scaling Vector Search

Managed Clusters



Serverless Collections



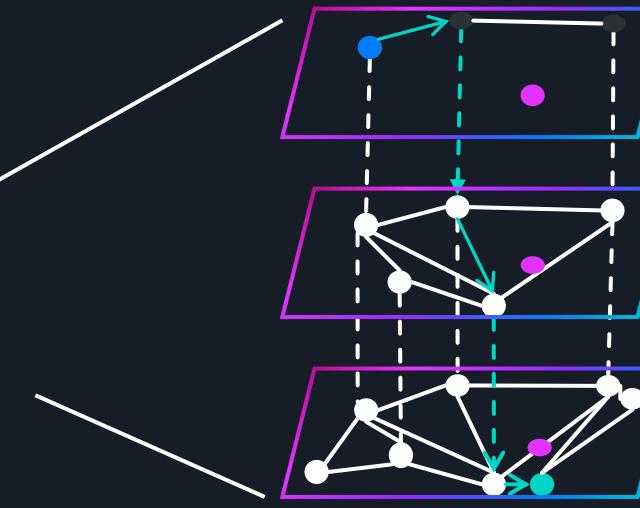
How long does it take to index 1-Billion?

Typically, Days

1-Billion Vectors

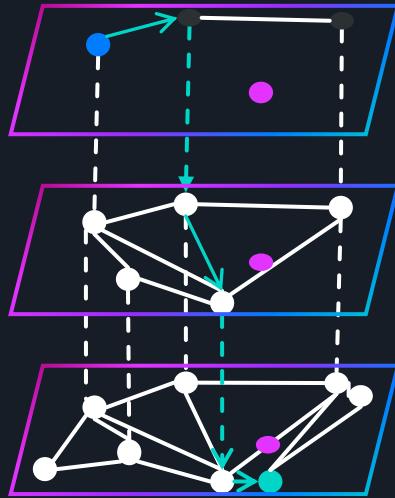
OpenSearch Service
Vector Database

Build Index



Build indexes

Life-cycle of a vector index...



Data Changes

Add, modify and delete content

(index (HNSW) recall degradation)

Model Changes

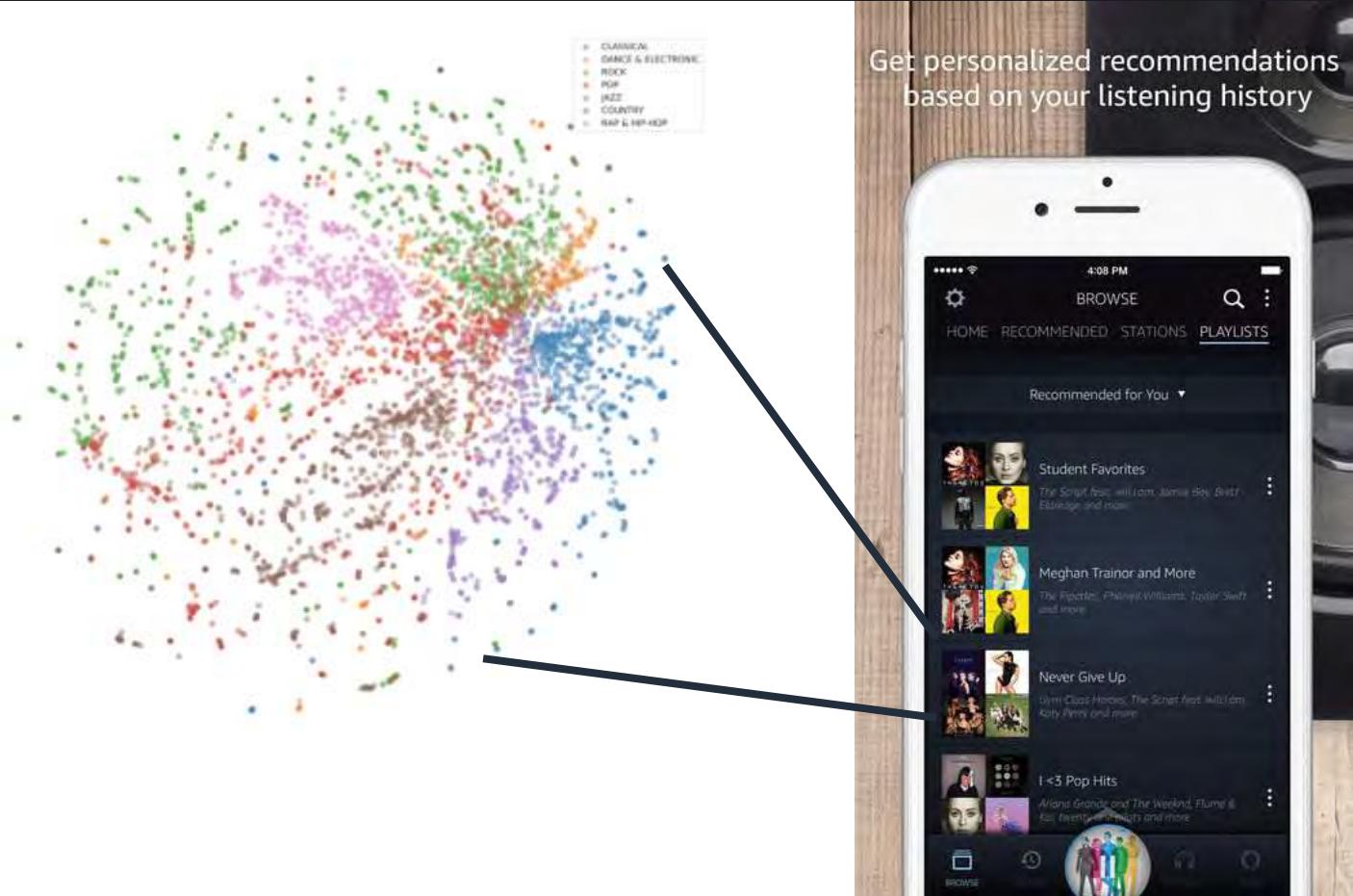
New provider or version

Model Changes

Fine-tuning

Personalization

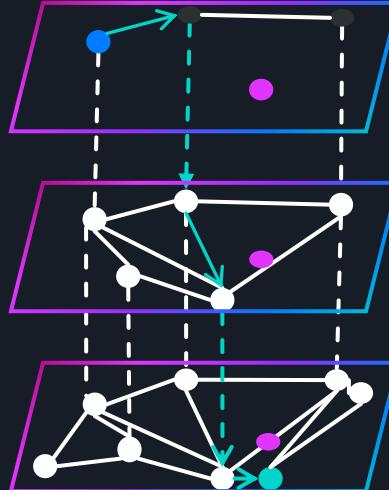
- **100 Million** music tracks with recommendations based on user listening history.
- **1.05 Billion** vectors indexed into OpenSearch to power item-item collaborative filtering.
- **Daily** model retraining to deliver high-quality recommendations



Source <https://aws.amazon.com/blogs/big-data/amazon-opensearch-services-vector-database-capabilities-explained/>

How to maintain fast search on dynamic applications?

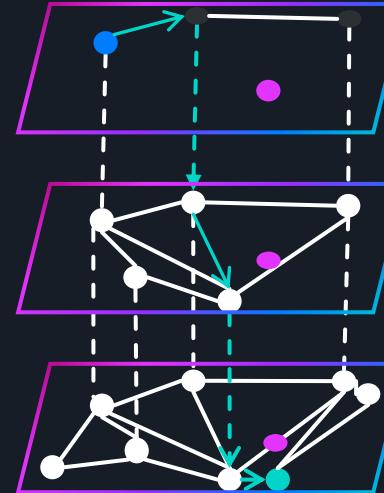
Compete for significant compute and RAM



Indexing

*Bulk, reindex, update, delete,
index, force-merge, flush...*

OpenSearch
Service
Managed Cluster
(Domain)



Search

Search.query.knn

Challenges at scale...

amazon music

- Index build and maintenance takes days.
- Vector ingestion can impact search times.

Help customers...

- Maintain innovation velocity and productivity
- Build responsive, dynamic, AI applications

GPU-accelerated Vector Indexing

NVIDIA cuVS

Best Performance

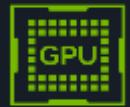
20X faster index build time, 11X lower latency

Advanced Algorithms

Performance-tuned approximate nearest neighbor search

Flexible Integration

Supports multiple languages including C, C++, Python, and Rust



Interoperable

interoperable between CPU and GPU

Scalable

Enables massive-scale vector search and clustering

Vector Search Integrations

Vector Databases

Open Source Libraries

Applications

Offline Workflows

cuVS

C++

C

Python

Java

Rust

Go

Nearest Neighbors

Exact and Approximate Nearest Neighbors, Quantization, Pre-filtering, Dynamic Batching, GPU/CPU Interoperability, Sparse Nearest Neighbors, Epsilon Nearest Neighbors, k-NN Graph Construction

Distance

Pairwise Distance, 1-Nearest Neighbors, Kernel Gramm Construction, Sparse Distances

Clustering

K-means, Hierarchical K-Means, Hierarchical Agglomerative Clustering, Spectral clustering

RAFT

High Performance Machine Learning Primitives

NCCL

CUDA Math Libraries

RMM

CCCL

CUDA

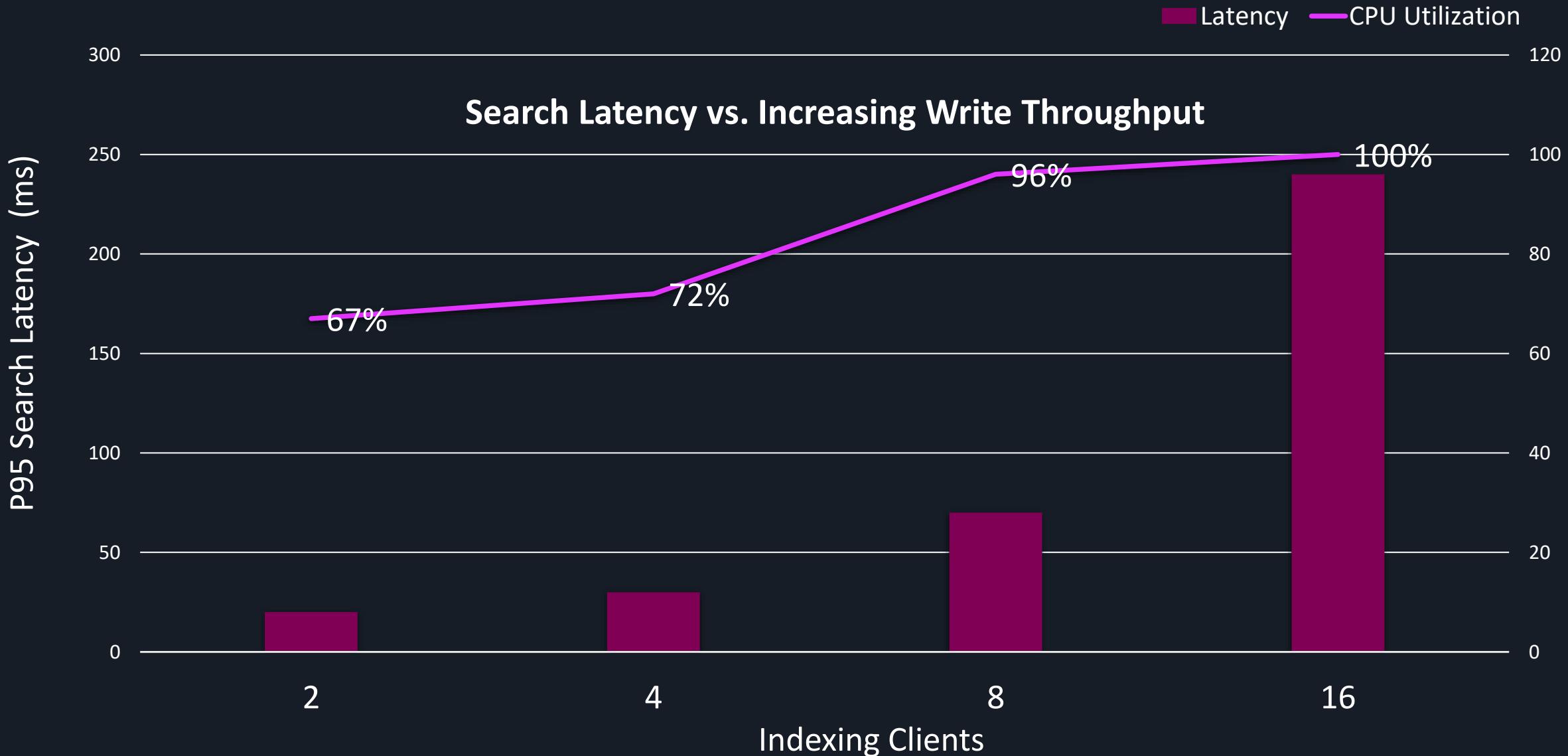
GPU-Acceleration on Managed Clusters (Domains)

Vectors	CPU-only (Index + Merge)	Add GPU	Speed Gain	Compute Cost
1M 768-dim	1.4 hr.	9.9 min.	8X	8X Less
10M 768-dim	8.5 hr.	36.8 min.	14X	12X Less
113M 1024-dim	28.7 hr.	4.5 hr.	6X	6X Less
1B 128-dim	31.9 hr.	2.8 hr. (Index: 35 min.)	11X	10X Less

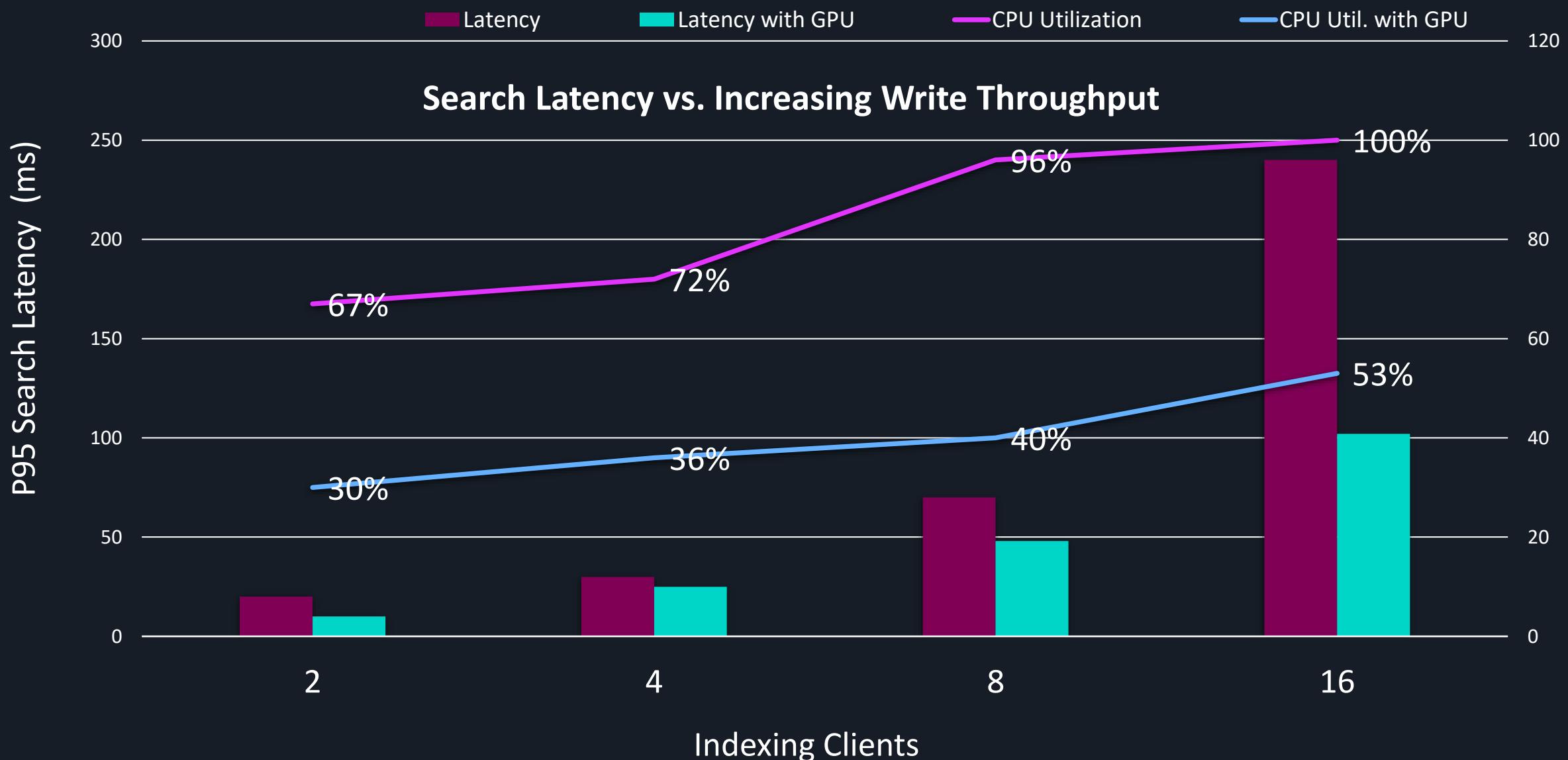
GPU-Acceleration on Serverless (Collections)

Vectors	Index OCU/hrs.	With GPU	Cost Reduction
1M 768-dim	8	1.5	5.3X
10M 768-dim (min. 32 OCUs)	78	20.3	3.8X
113M 1024-dim (min. 48 OCUs)	2721	304.5	8.9X \$653 vs. \$73
1B 128-dim (min. 48 OCUs)	1562	201	7.8X \$375 vs. \$48

Indexing Impacts Search Speed on Managed Clusters



Offloading Indexing to GPU Improves Search Speed

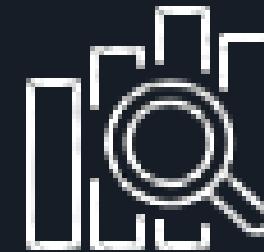


How can we deliver practical economics?

CPU Cluster

3 X 384 RAM

r8g.12xlarge.search:
48 vCPU, **384 RAM**



1B 1024 dim Vectors
32X compression

Indexing < 30%
of uptime

GPU Cluster

6 X 192 RAM

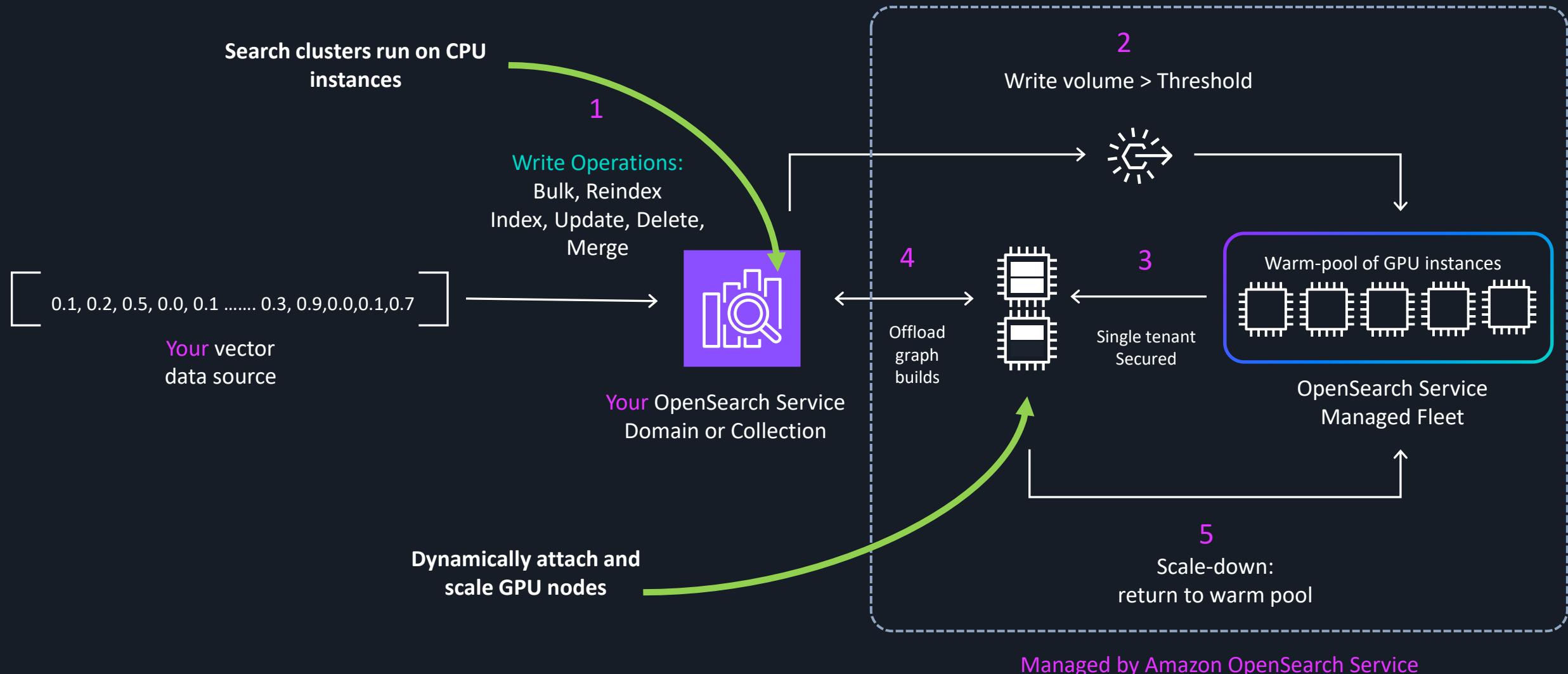
g6.12xlarge.search:
48 vCPU, **192 RAM**

2.4X Cost

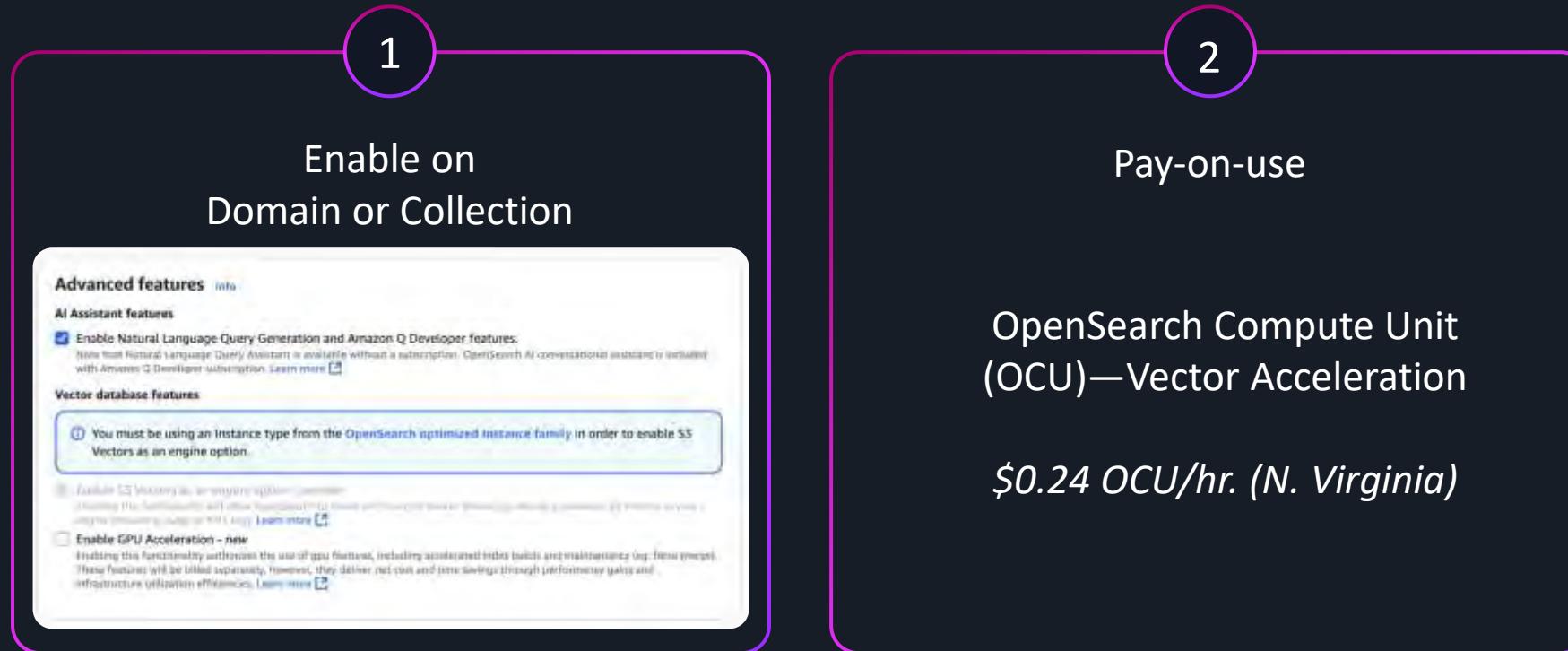
Overprovisioned GPU

Wasted \$ from poor
utilization

On-demand GPU acceleration, pay-for-value

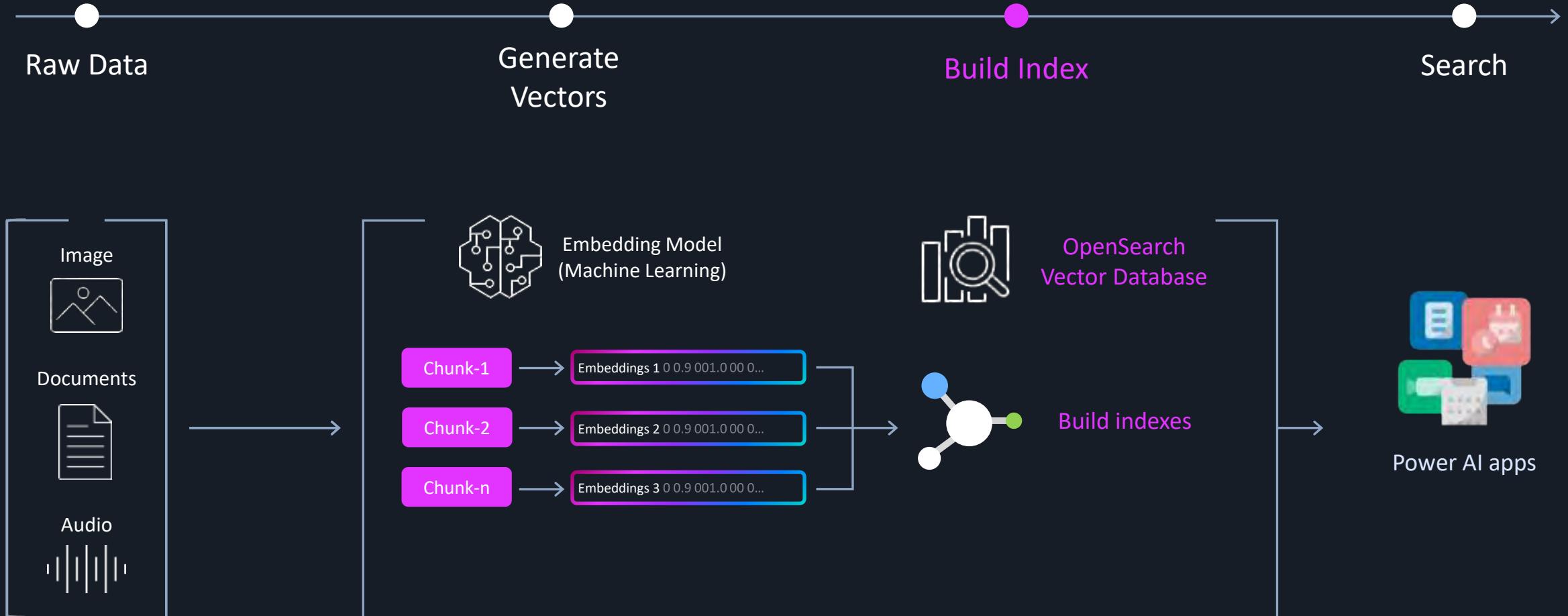


Serverless Acceleration for Domains and Collections

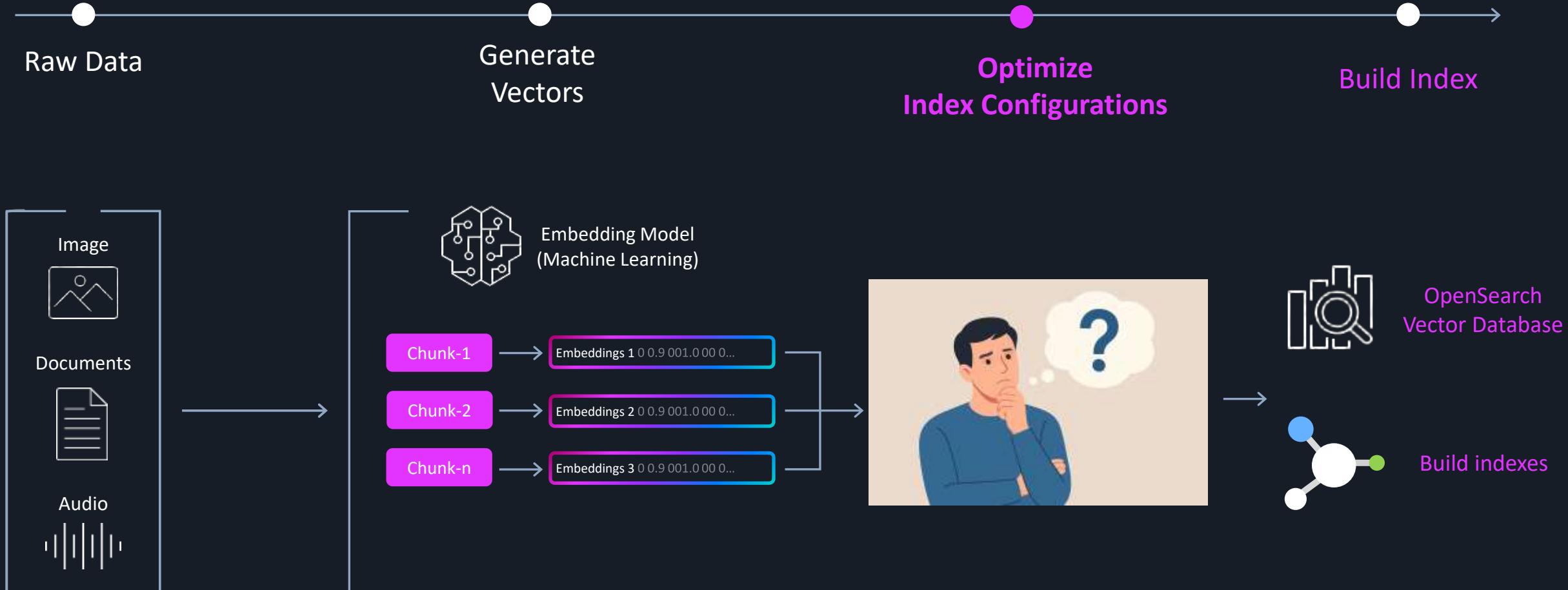


Optimizing Vector Indexes

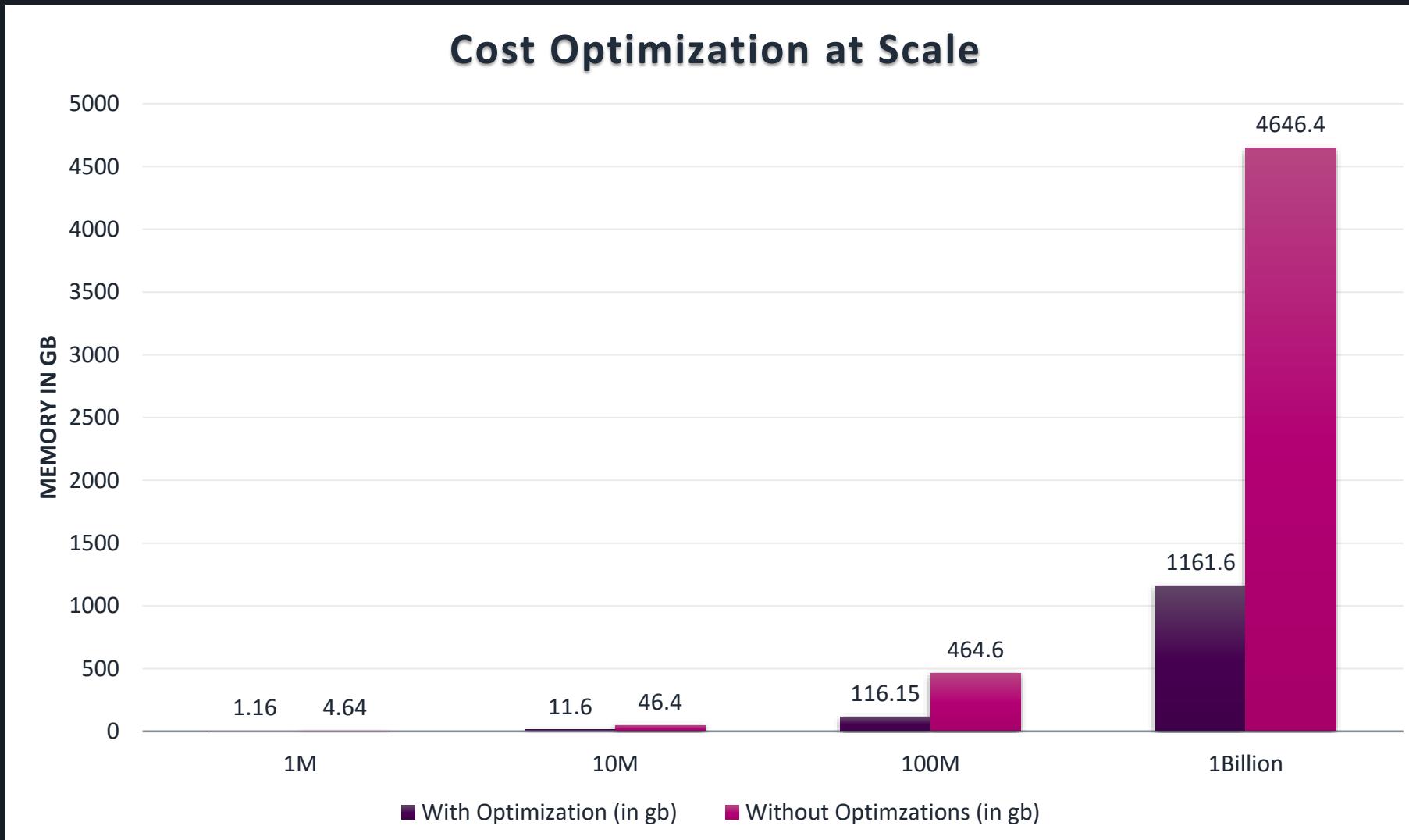
Building a Vector Database (Recap...)



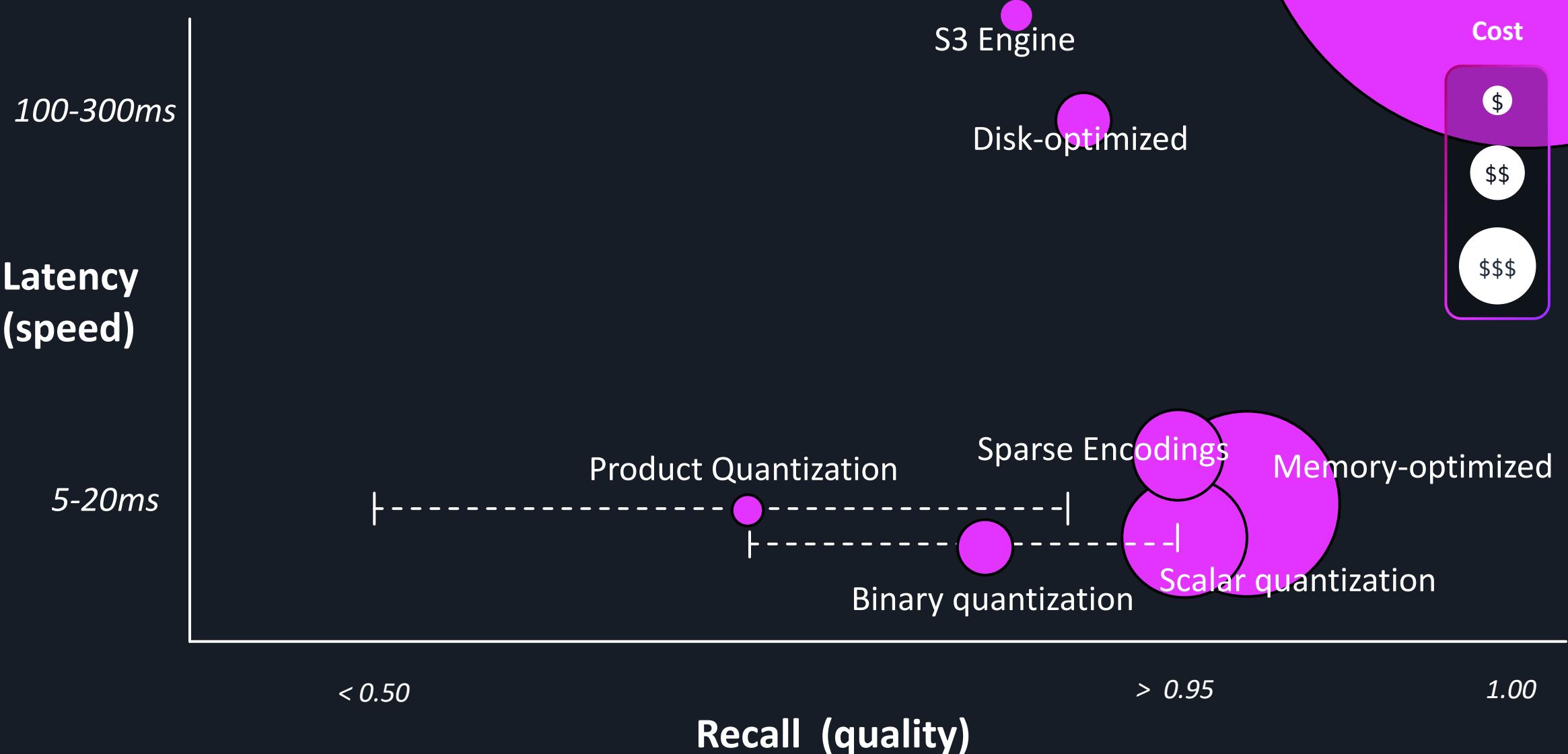
Building a Vector Database



Cost to host a 1-Billion vector index



Configure for favorable trade-offs



Time-consuming, expert-driven process

Select Index Parameters

Algorithms:

HNSW, ef_construction, m...

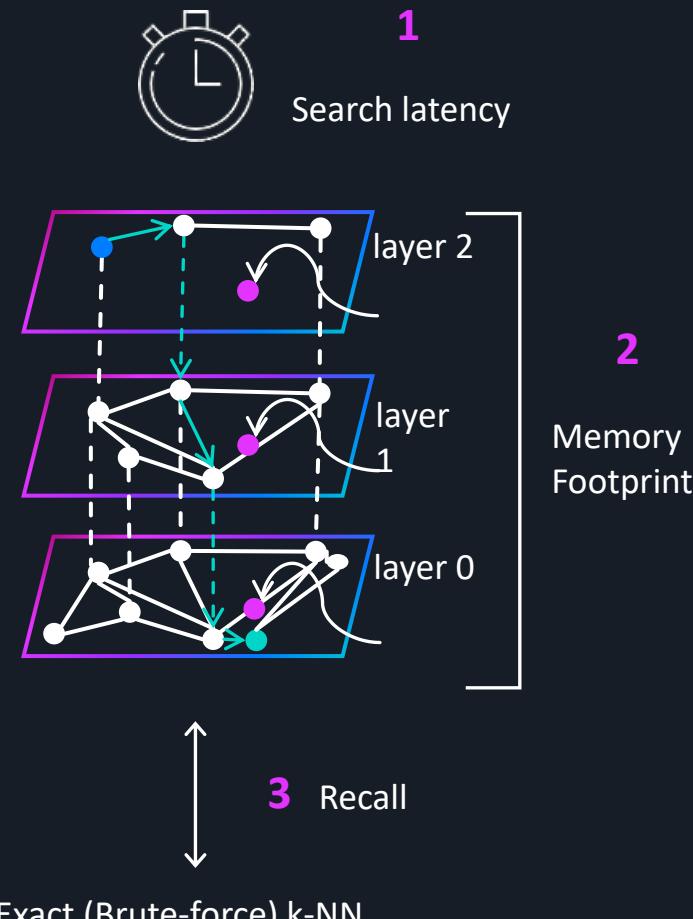
Quantization:

Scalar, Binary, Product

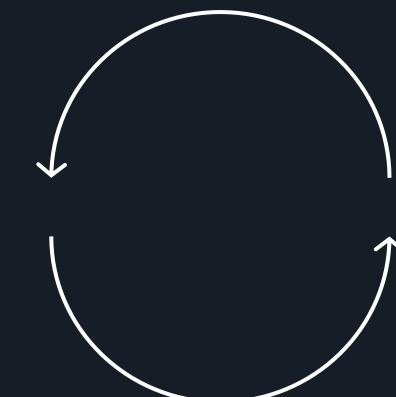
Engine Settings:

Disk-optimized, In-memory, Infrequent Queries

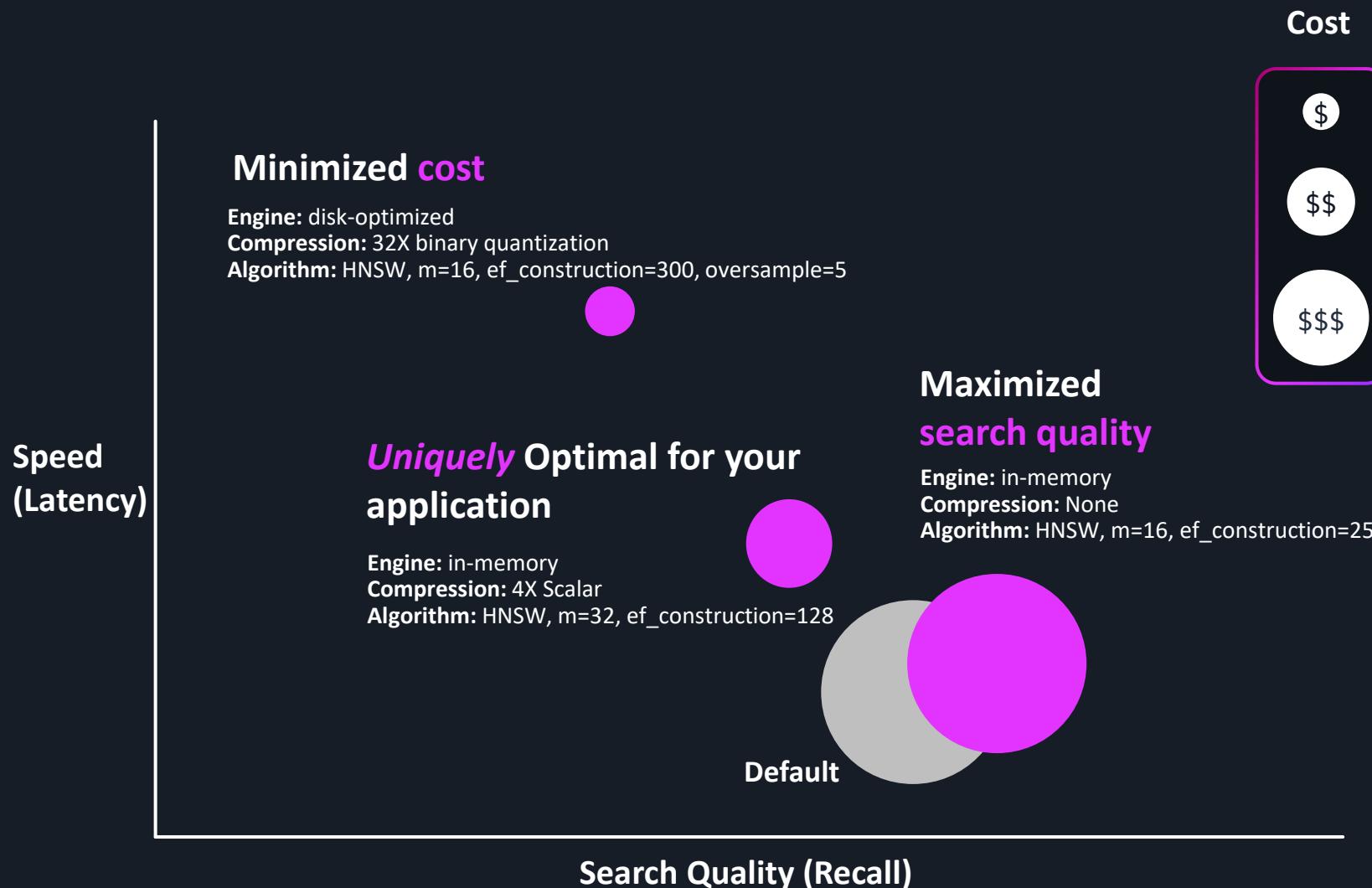
Build and Evaluate Index



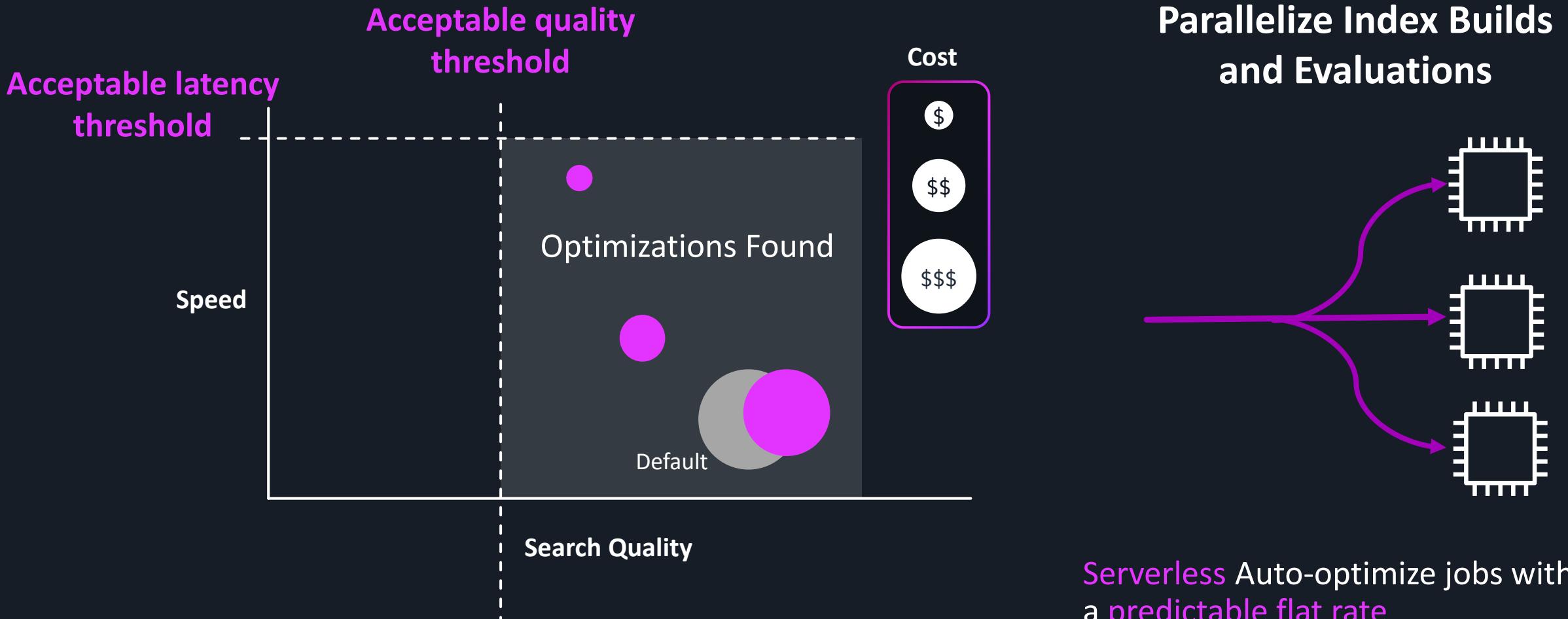
Adjust Parameters and Repeat



Best optimizations depend on data and use case



Let's simplify! Auto-optimize Vectors



Demo: Build an auto-optimized, GPU-accelerated vector database

Level up your skills on AWS Skill Builder

Build AWS Cloud and AI skills, your way, with our online learning center.

LEARN

1,000+ free learning resources

PRACTICE

Hands-on labs and immersive real-world simulations powered by AI

PREPARE

Official AWS Certification exam prep

VALIDATE

Microcredentials to validate practical skills

Scan to start learning

skillbuilder.aws

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Thank you

Please complete the session
survey in the mobile app