AWS

Invent

EEEEEEEEEEEEEEEEEEEEEEEEEE

dWS

\/‘7

AIM3300-R

Architecting multi-agent systems with
Amazon Bedrock AgentCore

Laith Al-Saadoon Alain Krok
(he/him) (he/him)

Principal Al Engineer Senior Al Engineer
AWS AWS

©a)yy§’nazon Welc52046e s imazon Méelf Sleavese s lndigbtsteséfiliates. All rights reserved

What are multi-agent
systems?

CAA)
2

Complexity

aws

N

Simple
actions

Workflows

Agents

Multi-
agents

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Agency

\ 4

KEY BENEFITS I

Why .ChOOse « Parallel processing scales performance
multi-agent :

d rCh Itectu rE? * Independent prompts, context, and tools per

agent

« Specialized agents outperform generalists

Separation of concerns improves maintainability

« Better conceptual model for complex tasks

« (Can scale beyond single context window limits

aWS © 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.
_/7

Four core patterns

aWS © 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.
\/‘7

Hierarchical) SWARM i Competitive Multi-agent DAG
(multi-agent collaboration)

aWS © 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.
\./‘7

LGENERALLY AVAILABLE]

Amazon Bedrock AgentCore

Comprehensive agentic platform: Everything you need for getting agents into production

IPe = = o

Runtime Memory Identity Gateway Code Browser Observability
Interpreter Tool

aWS © 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.
\/‘7

AgentCore Runtime

Am dZ0N * Isolated sessions up to 8 hrs

* Any framework, any LLM. Simple entrypoint contract
Bedrock

AgentCore Memory
Ag e ntCO re e Automatic memory extraction (short-term + long-term)

» Vector storage for semantic retrieval

AgentCore Gateway
* MCP client for tool connections

e Semantic search over tools: 300 tools = 4 relevant ones

aWS © 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.
_/7

Whiteboarding

aWS © 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.
\/‘7

aWS © 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.
N

Handoff

Entry point

Decision
making

Interaction

Goal

Predictability

Use case

aws

N

SWARM (multi-agent
collaboration)

Dynamic and peer-to-peer,
based on agent discoveries
and needs

Default or last active

Distributed; agents make
local decisions about task
planning and handoffs

Any to any agent

Different; Each agent has a
different goal

Low

Exploration, collective
adaptation

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Hierarchical

Role-based; tasks are
passed from the
orchestrator to the
appropriate worker

Leader

Centralized; the
orchestrator makes the
overall decisions and
routes tasks

Agent <-> leader

Different; Each
agent/team has a
different goal

Medium

Centralized decisions

Competitive

Task is passed from the
orchestrator to all
workers

Leader

Centralized; the
orchestrator makes the
overall decisions and
routes tasks

Agent <-> leader

Shared; Each
agent/team has the
same goal

Medium

Compare different
solutions for one
problem

Multi-agent DAG

Pre-determined

Workflow input
Predefined paths

State machine

Different; Each
agent/team has a
different goal

High

Multistep automation

dWS

\/‘7

Questions?

Please complete the session
survey in the mobile app

©a)yy§’nazon Welc52046e s imazon Méelf fSleavese s ndigbtsteséfiliates. All rights reserved.

Example: research system architecture

Lead agent responsibilities Subagent responsibilities

« Analyze user query Execute specific search tasks

« Develop research strategy o Iterate on findings

« Create specialized subagents « Use interleaved thinking

« Synthesize results « Filter and compress information
« Decide if more research needed Return focused results

aWS © 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

N

Context engineering tips

Think like our agents Scale effort to complexity Start wide, then narrow
Agents can see 50+ subagents Simple fact-finding: 1 agent Start with short, broad
for simple queries without with 3-10 tool calls queries. Evaluate results. Then

clear guidance progressively narrow focus

Complex research: 10+ agents based on findings

with divided responsibilities

aWS © 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.
_/7

Teach delegation

Give objectives, output
format, tool guidance, and
clear boundaries. Vague
instructions cause duplicated
work

aWS © 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.
_/7

Key principles

Tool design critical

Examine all tools first. Match
tool to intent. Bad tool
descriptions send agents
down wrong paths

Let agents self-improve

Frontier models can diagnose
failures and suggest
improvements.

Prod UCtiOn | Stateful Execution

n ? n r' n Agents maintain state across many tool calls. Need durable execution,
e g I e e I g error recovery, and checkpoints. Can't restart from beginning - too
expensive. Solution: Resume from error points, let agents adapt to tool

Cha llenges failures gracefully
Debugging Complexity

Non-deterministic decisions make debugging hard. Need full tracing to
see search queries, source choices, and tool failures. Monitor decision
patterns while maintaining privacy. High-level observability reveals root
causes

Deployment Strategy

Stateful agents can be anywhere in their process during updates. Use
rainbow deployments to gradually shift traffic. Can't update all agents
simultaneously without breaking running processes

aWS © 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.
_/7

Evaluation strategies for multi-agent
systems

Start Small LLM-as-Judge + Human

 Begin with 20 real-world test e LLM judges for scalability

cases (factual accuracy, citations,
completeness)

o Large effect sizes visible quickly
« Human testing for edge cases

« Iterate rapidly with small and subtle issues

samples
« Focus on end-state vs step-by-

« Scale evaluation as system
step process

matures
« Expect emergent behaviors from
interactions

aWS © 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.
_/7

Performance and token economics

Token usage explains 80% of performance variance
Multi-agent systems use 15x more tokens than chat

Parallel tool calling cuts wall time

Best for high-value tasks that justify token cost

Not suitable for all domains - coding has fewer parallelizable
tasks

aWS © 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.
_/7

When to Use Multi-Agent Patterns

Good Fit Poor Fit

« Open-ended research tasks « All agents need same context

« Breadth-first exploration « Many dependencies between agents
« Tasks exceeding context windows « Simple single-path tasks

« Heavy parallelization possible « Low-value routine operations
 Multiple specialized tool sets « Real-time agent coordination needed
 High-value complex problems « Cost exceeds value delivered

aWS © 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

N

Architecture patterns

Choose pattern based on
coordination needs: shared
scratchpad, supervisor delegation,
or hierarchical teams.

aWS © 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.
_/7

Key takeaways

Engineering excellence

Invest in prompt engineering, tool
design, evaluation, and
observability. These are your
primary levers for improving
agent behavior.

Production readiness

Last mile often becomes most of
the journey. Production requires
careful state management, error
handling, and deployment
strategies

ORCHESTRATOR-WORKER

Pattern 1:
Hierarchical

aws

N

© 2025, Amazon

Web Services,

, Inc. or its affiliates. All rights reserved.

Lead agent coordinates specialized workers
Each worker has independent context/tools
Workers return only final results to supervisor
Supervisor acts as intelligent router

Can delegate, monitor, and synthesize results

SHARED SCRATCHPAD I

Patte rn 2: Agents share a common workspace/memory
o All actions visible to all agents

M Ttt'ba g etnt Simple router controls state transitions

couaporation

Best for: Tasks requiring full context sharing

Trade-off: Verbose information passing, but complete

transparency across agents

aWS © 2025, Amazon Web S

n Web Services, Inc. or its affiliates. All rights reserved.
N

| i i)
SWARMS « Variant of hierarchical orchestrator-worker

Patte rn 3 X + Sub-agents spawned in swarms, either
°, o collaborative or competitive
Competitive

* Collaborative agents attempt to fill in gaps

Competitive agents try different solutions

Orchestrator synthesizes and scores

aWS © 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.
_/7

A2A
Patte ' 4: Clean handoffs from one agent to another
Pee r'tO' pee I Use A2A for RPC agents, usually organizational or

SDLC boundaries

aWS © 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.
_/7

Multi-Agent Systems Defined

Multiple independent actors powered by LLMs

Each agent has specialized prompts, tools, and capabilities
Agents are connected in a specific architecture

Coordinate through shared state or message passing
Autonomous decision-making within their scope

Graph-based representation: nodes = agents, edges = connections

aWS © 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.
_/7

dWS

\/‘7

Thank you

Please complete the session
survey in the mobile app

©a)yy§’nazon Welc52046e s imazon Méelf fSleavese s ndigbtsteséfiliates. All rights reserved.

	Instructions
	Slide 1
	Slide 2: Architecting multi-agent systems with Amazon Bedrock AgentCore
	Slide 3
	Slide 4
	Slide 5: Why choose multi-agent architecture?
	Slide 6
	Slide 7
	Slide 8: Amazon Bedrock AgentCore
	Slide 9: Amazon Bedrock AgentCore
	Slide 10
	Slide 11
	Slide 12
	Slide 13: Questions?
	Slide 14: Example: research system architecture
	Slide 15: Context engineering tips
	Slide 16: Key principles
	Slide 17: Production engineering challenges
	Slide 18: Evaluation strategies for multi-agent systems
	Slide 19: Performance and token economics
	Slide 20: When to Use Multi-Agent Patterns
	Slide 21: Key takeaways
	Slide 22: Pattern 1: Hierarchical
	Slide 23: Pattern 2: Multi-agent collaboration
	Slide 24: Pattern 3: Competitive
	Slide 25: Pattern 4: Peer-to-peer
	Slide 26: Multi-Agent Systems Defined
	Slide 27: Thank you

