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What are multi-agent
systems?
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Complexity
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Simple
actions

Workflows

Agents

Multi-
agents
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KEY BENEFITS I

Why .ChOOse « Parallel processing scales performance
multi-agent :

d rCh Itectu rE? * Independent prompts, context, and tools per

agent

« Specialized agents outperform generalists

Separation of concerns improves maintainability

« Better conceptual model for complex tasks

« (Can scale beyond single context window limits
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Four core patterns
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Hierarchical ) SWARM i Competitive Multi-agent DAG
(multi-agent collaboration)
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LGENERALLY AVAILABLE]

Amazon Bedrock AgentCore

Comprehensive agentic platform: Everything you need for getting agents into production

IPe = = o

Runtime Memory Identity Gateway Code Browser Observability
Interpreter Tool
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AgentCore Runtime

Am dZ0N * Isolated sessions up to 8 hrs

* Any framework, any LLM. Simple entrypoint contract
Bedrock

AgentCore Memory
Ag e ntCO re e Automatic memory extraction (short-term + long-term)

» Vector storage for semantic retrieval

AgentCore Gateway
* MCP client for tool connections

e Semantic search over tools: 300 tools = 4 relevant ones
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Whiteboarding
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Handoff

Entry point

Decision
making

Interaction

Goal

Predictability

Use case
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SWARM (multi-agent
collaboration)

Dynamic and peer-to-peer,
based on agent discoveries
and needs

Default or last active

Distributed; agents make
local decisions about task
planning and handoffs

Any to any agent

Different; Each agent has a
different goal

Low

Exploration, collective
adaptation
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Hierarchical

Role-based; tasks are
passed from the
orchestrator to the
appropriate worker

Leader

Centralized; the
orchestrator makes the
overall decisions and
routes tasks

Agent <-> leader

Different; Each
agent/team has a
different goal

Medium

Centralized decisions

Competitive

Task is passed from the
orchestrator to all
workers

Leader

Centralized; the
orchestrator makes the
overall decisions and
routes tasks

Agent <-> leader

Shared; Each
agent/team has the
same goal

Medium

Compare different
solutions for one
problem

Multi-agent DAG

Pre-determined

Workflow input
Predefined paths

State machine

Different; Each
agent/team has a
different goal

High

Multistep automation
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Questions?

Please complete the session
survey in the mobile app
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Example: research system architecture

Lead agent responsibilities Subagent responsibilities

« Analyze user query  Execute specific search tasks

« Develop research strategy o Iterate on findings

« Create specialized subagents « Use interleaved thinking

« Synthesize results « Filter and compress information
« Decide if more research needed  Return focused results

aWS © 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

N



Context engineering tips

Think like our agents Scale effort to complexity Start wide, then narrow
Agents can see 50+ subagents Simple fact-finding: 1 agent Start with short, broad
for simple queries without with 3-10 tool calls queries. Evaluate results. Then

clear guidance progressively narrow focus

Complex research: 10+ agents based on findings

with divided responsibilities
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Teach delegation

Give objectives, output
format, tool guidance, and
clear boundaries. Vague
instructions cause duplicated
work
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Key principles

Tool design critical

Examine all tools first. Match
tool to intent. Bad tool
descriptions send agents
down wrong paths

Let agents self-improve

Frontier models can diagnose
failures and suggest
improvements.



Prod UCtiOn | Stateful Execution

n ? n r' n Agents maintain state across many tool calls. Need durable execution,
e g I e e I g error recovery, and checkpoints. Can't restart from beginning - too
expensive. Solution: Resume from error points, let agents adapt to tool

Cha llenges failures gracefully
Debugging Complexity

Non-deterministic decisions make debugging hard. Need full tracing to
see search queries, source choices, and tool failures. Monitor decision
patterns while maintaining privacy. High-level observability reveals root
causes

Deployment Strategy

Stateful agents can be anywhere in their process during updates. Use
rainbow deployments to gradually shift traffic. Can't update all agents
simultaneously without breaking running processes
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Evaluation strategies for multi-agent
systems

Start Small LLM-as-Judge + Human

 Begin with 20 real-world test e LLM judges for scalability

cases (factual accuracy, citations,
completeness)

o Large effect sizes visible quickly
« Human testing for edge cases

« Iterate rapidly with small and subtle issues

samples
« Focus on end-state vs step-by-

« Scale evaluation as system
step process

matures
« Expect emergent behaviors from
interactions
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Performance and token economics

Token usage explains 80% of performance variance
Multi-agent systems use 15x more tokens than chat

Parallel tool calling cuts wall time

Best for high-value tasks that justify token cost

Not suitable for all domains - coding has fewer parallelizable
tasks

aWS © 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.
\_/7



When to Use Multi-Agent Patterns

Good Fit Poor Fit

« Open-ended research tasks « All agents need same context

« Breadth-first exploration « Many dependencies between agents
« Tasks exceeding context windows « Simple single-path tasks

« Heavy parallelization possible « Low-value routine operations
 Multiple specialized tool sets « Real-time agent coordination needed
 High-value complex problems « Cost exceeds value delivered
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Architecture patterns

Choose pattern based on
coordination needs: shared
scratchpad, supervisor delegation,
or hierarchical teams.
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Key takeaways

Engineering excellence

Invest in prompt engineering, tool
design, evaluation, and
observability. These are your
primary levers for improving
agent behavior.

Production readiness

Last mile often becomes most of
the journey. Production requires
careful state management, error
handling, and deployment
strategies



ORCHESTRATOR-WORKER

Pattern 1:
Hierarchical
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Lead agent coordinates specialized workers
Each worker has independent context/tools
Workers return only final results to supervisor
Supervisor acts as intelligent router

Can delegate, monitor, and synthesize results



SHARED SCRATCHPAD I

Patte rn 2: Agents share a common workspace/memory
o All actions visible to all agents

M Ttt'ba g etnt Simple router controls state transitions

couaporation

Best for: Tasks requiring full context sharing

Trade-off: Verbose information passing, but complete

transparency across agents
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| i i )
SWARMS « Variant of hierarchical orchestrator-worker

Patte rn 3 X + Sub-agents spawned in swarms, either
°, o collaborative or competitive
Competitive

* Collaborative agents attempt to fill in gaps

Competitive agents try different solutions

Orchestrator synthesizes and scores
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A2A
Patte ' 4: Clean handoffs from one agent to another
Pee r'tO' pee I Use A2A for RPC agents, usually organizational or

SDLC boundaries
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Multi-Agent Systems Defined

Multiple independent actors powered by LLMs

Each agent has specialized prompts, tools, and capabilities
Agents are connected in a specific architecture

Coordinate through shared state or message passing
Autonomous decision-making within their scope

Graph-based representation: nodes = agents, edges = connections
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Thank you

Please complete the session
survey in the mobile app
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