
© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Architecting multi-agent systems with
Amazon Bedrock AgentCore

A I M 3 3 0 0 - R

Laith Al-Saadoon

(he/him)

Principal AI Engineer

AWS

Alain Krok

(he/him)

Senior AI Engineer

AWS

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What are multi-agent
systems?

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Agency

Complexity

Simple
actions

Workflows

Agents

Multi-
agents

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

K E Y B E N E F I T S

• Specialized agents outperform generalists

• Parallel processing scales performance

• Separation of concerns improves maintainability

• Independent prompts, context, and tools per

agent

• Better conceptual model for complex tasks

• Can scale beyond single context window limits

Why choose
multi-agent
architecture?

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Four core patterns

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

SWARM
(multi-agent collaboration)

Hierarchical Competitive Multi-agent DAG

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Amazon Bedrock AgentCore
Comprehensive agentic platform: Everything you need for getting agents into production

Runtime Memory Identity Gateway Code

Interpreter

Browser

Tool

G E N E R A L L Y A V A I L A B L E

Observability

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

• AgentCore Runtime

• Isolated sessions up to 8 hrs

• Any framework, any LLM. Simple entrypoint contract

• AgentCore Memory

• Automatic memory extraction (short-term + long-term)

• Vector storage for semantic retrieval

• AgentCore Gateway

• MCP client for tool connections

• Semantic search over tools: 300 tools → 4 relevant ones

Amazon
Bedrock
AgentCore

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Whiteboarding

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

SWARM (multi-agent
collaboration)

Hierarchical Competitive Multi-agent DAG

Handoff Dynamic and peer-to-peer,
based on agent discoveries
and needs

Role-based; tasks are
passed from the
orchestrator to the
appropriate worker

Task is passed from the
orchestrator to all
workers

Pre-determined

Entry point Default or last active Leader Leader Workflow input

Decision
making

Distributed; agents make
local decisions about task
planning and handoffs

Centralized; the
orchestrator makes the
overall decisions and
routes tasks

Centralized; the
orchestrator makes the
overall decisions and
routes tasks

Predefined paths

Interaction Any to any agent Agent <-> leader Agent <-> leader State machine

Goal Different; Each agent has a
different goal

Different; Each
agent/team has a
different goal

Shared; Each
agent/team has the
same goal

Different; Each
agent/team has a
different goal

Predictability Low Medium Medium High

Use case Exploration, collective
adaptation

Centralized decisions Compare different
solutions for one
problem

Multistep automation

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Please complete the session
survey in the mobile app

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Questions?

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Lead agent responsibilities Subagent responsibilities

• Analyze user query

• Develop research strategy

• Create specialized subagents

• Synthesize results

• Decide if more research needed

• Execute specific search tasks

• Iterate on findings

• Use interleaved thinking

• Filter and compress information

• Return focused results

Example: research system architecture

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Think like our agents Scale effort to complexity Start wide, then narrow

Agents can see 50+ subagents

for simple queries without

clear guidance

Simple fact-finding: 1 agent

with 3-10 tool calls

Complex research: 10+ agents

with divided responsibilities

Start with short, broad

queries. Evaluate results. Then

progressively narrow focus

based on findings

Context engineering tips

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Teach delegation Tool design critical Let agents self-improve

Give objectives, output

format, tool guidance, and

clear boundaries. Vague

instructions cause duplicated

work

Examine all tools first. Match

tool to intent. Bad tool

descriptions send agents

down wrong paths

Frontier models can diagnose

failures and suggest

improvements.

Key principles

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Stateful Execution

Agents maintain state across many tool calls. Need durable execution,

error recovery, and checkpoints. Can't restart from beginning - too

expensive. Solution: Resume from error points, let agents adapt to tool

failures gracefully

Debugging Complexity

Non-deterministic decisions make debugging hard. Need full tracing to

see search queries, source choices, and tool failures. Monitor decision

patterns while maintaining privacy. High-level observability reveals root

causes

Deployment Strategy

Stateful agents can be anywhere in their process during updates. Use

rainbow deployments to gradually shift traffic. Can't update all agents

simultaneously without breaking running processes

Production
engineering
challenges

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Start Small LLM-as-Judge + Human

• Begin with 20 real-world test

cases

• Large effect sizes visible quickly

• Iterate rapidly with small

samples

• Scale evaluation as system

matures

• LLM judges for scalability

(factual accuracy, citations,

completeness)

• Human testing for edge cases

and subtle issues

• Focus on end-state vs step-by-

step process

• Expect emergent behaviors from

interactions

Evaluation strategies for multi-agent
systems

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

• Token usage explains 80% of performance variance

• Multi-agent systems use 15x more tokens than chat

• Parallel tool calling cuts wall time

• Best for high-value tasks that justify token cost

• Not suitable for all domains - coding has fewer parallelizable

tasks

Performance and token economics

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Good Fit Poor Fit

• Open-ended research tasks

• Breadth-first exploration

• Tasks exceeding context windows

• Heavy parallelization possible

• Multiple specialized tool sets

• High-value complex problems

• All agents need same context

• Many dependencies between agents

• Simple single-path tasks

• Low-value routine operations

• Real-time agent coordination needed

• Cost exceeds value delivered

When to Use Multi-Agent Patterns

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Architecture patterns Engineering excellence Production readiness

Choose pattern based on

coordination needs: shared

scratchpad, supervisor delegation,

or hierarchical teams.

Invest in prompt engineering, tool

design, evaluation, and

observability. These are your

primary levers for improving

agent behavior.

Last mile often becomes most of

the journey. Production requires

careful state management, error

handling, and deployment

strategies

Key takeaways

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

O R C H E S T R A T O R - W O R K E R

Lead agent coordinates specialized workers

Each worker has independent context/tools

Workers return only final results to supervisor

Supervisor acts as intelligent router

Can delegate, monitor, and synthesize results

Pattern 1:
Hierarchical

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

S H A R E D S C R A T C H P A D

Agents share a common workspace/memory

All actions visible to all agents

Simple router controls state transitions

Best for: Tasks requiring full context sharing

Trade-off: Verbose information passing, but complete

transparency across agents

Pattern 2:
Multi-agent
collaboration

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

S W A R M S
• Variant of hierarchical orchestrator-worker

• Sub-agents spawned in swarms, either

collaborative or competitive

• Collaborative agents attempt to fill in gaps

Competitive agents try different solutions

Orchestrator synthesizes and scores

Pattern 3:
Competitive

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

A 2 A

Clean handoffs from one agent to another

Use A2A for RPC agents, usually organizational or

SDLC boundaries

Pattern 4:
Peer-to-peer

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Multiple independent actors powered by LLMs

Each agent has specialized prompts, tools, and capabilities

Agents are connected in a specific architecture

Coordinate through shared state or message passing

Autonomous decision-making within their scope

Graph-based representation: nodes = agents, edges = connections

Multi-Agent Systems Defined

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Please complete the session
survey in the mobile app

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Thank you

	Instructions
	Slide 1
	Slide 2: Architecting multi-agent systems with Amazon Bedrock AgentCore
	Slide 3
	Slide 4
	Slide 5: Why choose multi-agent architecture?
	Slide 6
	Slide 7
	Slide 8: Amazon Bedrock AgentCore
	Slide 9: Amazon Bedrock AgentCore
	Slide 10
	Slide 11
	Slide 12
	Slide 13: Questions?
	Slide 14: Example: research system architecture
	Slide 15: Context engineering tips
	Slide 16: Key principles
	Slide 17: Production engineering challenges
	Slide 18: Evaluation strategies for multi-agent systems
	Slide 19: Performance and token economics
	Slide 20: When to Use Multi-Agent Patterns
	Slide 21: Key takeaways
	Slide 22: Pattern 1: Hierarchical
	Slide 23: Pattern 2: Multi-agent collaboration
	Slide 24: Pattern 3: Competitive
	Slide 25: Pattern 4: Peer-to-peer
	Slide 26: Multi-Agent Systems Defined
	Slide 27: Thank you

