
© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Optimize multi-tenant
serverless architectures
for agility and scale

Anand Bilgaiyan

S V S 3 2 2

(he/him)

Sr. Specialist PSA –
Enterprise Transformation

Amazon Web Services

Nishant Dhiman

(he/him)

Sr. Solutions Architect

Amazon Web Services

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Agenda

01 Multi-tenant challenges

02 Serverless for multi-tenant

03 Use case walkthrough

04 Best practices

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Unique challenges

Noisy neighbor

Scaling integration

Tenant isolation

Cost attribution Inefficient

resource utilization

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Serverless-powered multi-tenant approach

Tenant consumption Cost, scale, performance

C
o

n
su

m
p

ti
o

n

Time

No infrastructure

provisioning,

no management

Automatic scaling

Pay for value

Highly available

and secure

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Multi-tenant models

Tenant 1

Silo

Microservice

WebApp

Microservice

Tenant 2

Microservice

WebApp

Microservice

Bridge

Tenant 1

Microservice

WebApp

Tenant 2

Microservice

Pool

Tenants 1–N

Microservice

WebApp

Microservice

Microservice

Microservice

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Find the right mix of scale, cost, and experience
O U R E C O M M E R C E U S E C A S E

Product service

Fulfillment

service

Shipment

service

Database

Order service

Event

Invoice service

Order fulfillment and shipment workflowOrder creation

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Find the right mix of scale, cost, and experience
O U R E C O M M E R C E U S E C A S E

Product service

Fulfillment

service

Shipment

service

Order service
Invoice service

Order fulfillment and shipment workflowOrder creation

Database

Event

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Serverless implementation: Order service

AWS Lambda Amazon EventBridgeAmazon API gateway

Amazon DynamoDB

Event

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Multi-tenancy with AWS Lambda

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

AWS Lambda deployment models

Order

Application services

Tenant 1 Tenant 2 Tenant 3

Product Order

Tenant 4

Product

Pooled tenants
(premium, standard, basic tiers)

Siloed tenants
(platinum tier)

Order Product

Tenant 5

AWS

CodePipeline

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Data isolation

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Amazon

Cognito

Underlying

endpoint
Amazon

API Gateway

Authenticate

Invoke action Validate token

Authorization logic is

coded into application

Application

Amazon

Verified Permissions

Policy store

Request

Query

Access decision

RBAC and ABAC

1

2 3

4

1

2

3

4

AWS Lambda isolation models:
Amazon Verified Permissions

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

 permit (

 principal in MultitenantApp::Role::"allAccessRole",

 action in [

 MultitenantApp::Action::”CreateOrder",

 MultitenantApp::Action::”ViewOrder”

],

 resource

)

 when {

 resource in principal.Tenant &&

 principal.account_lockout_flag == false &&

 context.uses_mfa == true

 };

Implement app permissions as Cedar policies

• Cedar is easy to read and write

• Separate policies are easy to audit and change

• Cedar validator helps prevent policy mistakes

Verified Permissions policy example

Declarative way: Cedar policy language

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Tenant 1 Tenant 2

Amazon

API Gateway

Amazon

Verified Permissions

– policy store 1

Amazon

Verified Permissions

– policy store 2

Backend logic/authorizer

Tenant 1 Tenant 2

Amazon

API Gateway

Amazon

Verified Permissions

Tenant 1 & 2 policy store

{

 “sub”: ”12345”,

 “name”: ”Alice”,

 “tenantId”: ”Tenant-1”,

 “policyStoreid”: ”store-1”

}

Tenant isolation

Backend logic/authorizer

AWS Lambda AWS Lambda

{

 “sub”: ”67890”,

 “name”: ”Bob”,

 “tenantId”: ”Tenant-2”,

 “policyStoreid”: ”store-2”

}

{

 “sub”: ”12345”,

 “name”: ”Alice”,

 “tenantId”: ”Tenant-1”,

}

{

 “sub”: ”67890”,

 “name”: ”Bob”,

 “tenantId”:”Tenant-2”,

}

Verified Permissions: Multi-tenant approach

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Cost per tenant

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Product

AWS Lambda layers for centralized logging and
metrics collection

Order

Logging Metrics

Identity token

Decode token

Log (tenant-identity) RecordMetrics (tenant-identity)

Identity token

Lambda layers

AWS Lambda AWS Lambda

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Serverless: Cost per tenant
C A P T U R E A N D S T O R E T E L E M E T R Y

Lambda

• Duration

• Number of

invocations

Amazon API

Gateway

• Number of requests

Amazon API

Gateway

AWS Lambda

authorizer

{ tenantId: 1 }

AWS Lambda

layers

AWS Lambda

Extract

tenantId
{ tenantId: 1 }

Amazon

CloudWatch

Amazon

DynamoDB

JWT (tenantId)

Tenant users

Cost per tenant

Amazon Cognito

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Noisy neighbor

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Tier-based throttling with AWS Lambda and
Amazon API Gateway

Basic tier Standard tier Platinum 1 Platinum 2

JWTJWT JWT JWT

Amazon API Gateway

AWS Lambda

custom

authorizer

TenantId → Tenant tier → API key

Authorizer
policy

API key → Usage plan

Product

Application services

Order

Throttling policies applied

AWS Lambda AWS Lambda

Amazon DynamoDB

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Scaling multi-tenant applications
with AWS Lambda

Function quota

Scaling rate per function,
in each Region

1,000 new concurrent executions
every 10 seconds

Account concurrency

Maximum concurrency in a given
Region across all functions

1,000 in all Regions

This can NOT be increasedThis can be increased

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What if you need more scale?

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

AWS Lambda concurrency controls

Provisioned concurrency

Sets floor on minimum number of
execution environments

Pre-warm execution environments
to reduce cold-start impact

Burst to use standard concurrency,
if desired

Can save costs in certain situations

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What if scaling too fast may
overwhelm downstream systems?

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

AWS Lambda concurrency controls

Reserved concurrency

Sets ceiling on maximum number of
execution environments – upper limit
on maximum concurrency for a given
function

Also, reserves that concurrency from
the account’s quota

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Noisy neighbor and AWS Lambda concurrency

Microservice Microservice

Microservice Microservice

Microservice Microservice

Microservice Microservice

Microservice Microservice

Microservice Microservice

Basic tier

 Reserve concurrency = 100

Advanced tier

 Reserve concurrency = 300

Premium tier

Reserve concurrency = All unreserved

Noisy neighbor

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Multi-tenancy best practices with AWS Lambda

Use Amazon Verified Permissions for isolation

Leverage Lambda layers for logs and metrics consumption to

determine cost per tenant

Control scale and noisy neighbors with AWS Lambda reserved

concurrency and Amazon API Gateway usage plan

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Integration use cases in
multi-tenant solutions

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Integration patterns

Asynchronous

Sender Receiver

M1 M2 M1 M2

Queue

Ack Ack

Synchronous

Receiver

Request

Response

Sender

Subscribers

B AC

Topic

B AC

B AC

B AC

Publisher

Publish/subscribe

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Serverless implementation: Fulfillment and
shipment services

Amazon

EventBridge

Amazon SQS AWS Lambda

Fulfillment service Shipment service

Amazon

EventBridge

Event

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Common questions

Should I share my resources across tenants?

What if one tenant produces more messages?

What about data isolation? How to handle errors?

Operational complexity?

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Noisy neighbor

3 5 1 4 2 1 3 2 1

Order queue OutIn

Tenant A Tenant B Tenant C

• Solve noisy neighbor problem while continuing to meet the isolation

requirements of tenants

• At the same time, remain agile, simplify operations, and optimize costs

Tenant A causing noisy neighbor

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Queue sharing based on tier

Order

Create

Tenant A Tenant B

Tenant C

3 2 1 1

2

in out

in out

1

Standard tier

Platinum tier

Belong to standard tier

Belongs to platinum tier

2

3

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Handling a noisy neighbor effectively: Rate Limit

Tenant 1

Tenant 2

…..

Tenant 3

Throw error

Process order
Check

throttle
2 1 1

Ok

Too high

Order queue

API Gateway usage plans

Gold tier – 300 req/sec

Standard tier – 100 req/sec

CreateOrder

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Configuring batch size for data isolation

Messages

Batch size = 10

AWS Lambda

Single invocation

has access to cross-

tenants’ messages3 5

1 4 2

By default, batch size = 10

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Messages AWS Lambda

Processing 1

message per

invocation

3 5

1 4 2

Batch size = 1

1st invocation2nd invocation

Configuring batch size for data isolation

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Data isolation and security: Message attributes

Amazon

SQS
AWS Lambda

Extract tenant Id

Lambda layer

Backend

systems

{SQS resource policies}

Message attributes with tenant’s context

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Multi-tenancy best practices with Amazon SQS

Configure the queue to delay messages to put off work until later

Avoid too many in-flight messages

Use dead-letter queues for messages that can’t be processed

Pass tenant context as message attributes while sharing queues

across tenants

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Event-driven use case
considerations for multi-tenancy

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Event-driven ecommerce use case

Product service

Fulfillment

service

Database

Order service

Order creation

PackOrder

Amazon

EventBridge

ShipOrder

Shipment

service

Invoice service

GenerateInvoice

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Event filtering and routing with
Amazon EventBridge

Fulfillment

service

Invoice service

Order service Shipment service

Rule 1

Rule 2

Rule 3

Tenant1.oderCreated

Tenant2.oderCreated

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Routing events based on tiers

{
 "source": ["order.service"],
 "detail": {
 "tenantId": ["tenant-xxxxx"],
 "tier": ["Gold"]
 },
 "detail-type": ["OrderCreated"],
 "resources": [],

 //. . . . additional attributes
}

An example event from Order Service

{
 "source": ["order.service"],
 "detail": {
 "tier": ["Gold"]
 }
}

Rule

Amazon EventBridge rule

Fulfillment

service

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Optimizing the number of rules

{
 "source": ["shopping.cart.service"],
 "detail": {
 "tenantId": ["tenant-A"],
 "tier": ["Gold"]
 },
 "detail-type":
[”shopping.cart.error.timeout"],
 "resources": [],

 //. . . . additional attributes
}

Event for Tenant A Event for Tenant B

{
 "source": ["shopping.inventory.service"],
 "detail": {
 "tenantId": ["tenant-B"],
 "tier": ["Gold"]
 },
 "detail-type”:
["shopping.inventory.error.outofstock"],
 "resources": [],

 //. . . . additional attributes
}

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Filtering events using wildcard pattern matching

{ "source": [{
"prefix": "shopping."
}],
"detail-type": [{
"wildcard": "*.error.*"
}],
"detail": {
"tenantId": [{ "exists": true }]
} }

Rule

Amazon EventBridge rule

Incident

management

systemEvents from tenants

Wildcard pattern matching

Fewer rules results in

increased operational

excellence

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Custom event bus

Tenant A

 New order created

Shared event bus

Tenant B

 Order canceled

Tenant C

 Order tracking updated

Rules

Tenant A

 Invoice processing function

Tenant B

 Invoice processing workflow

Hybrid approach: Bridge model

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Summary: Amazon EventBridge

Use a single rule per subscriber

Avoid using the default event bus for custom events

Use wildcard pattern matching wherever feasible

With a pool model, you get a centralized bus with

resource limits applicable

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Key takeaways

Architectural design: Select the right multi-tenant model,

externalize data isolation

01

Cost optimization: Use Lambda layers, execute asynchronously

when possible

02

To avoid noisy neighbors: Implement rate limiting,

a tier-based strategy, and capacity reservation

03

Scalability and agility: Leverage low-code integration,

serverless microservices
04

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Check out these other sessions

API306 | Integration patterns for distributed systems

Wednesday (Dec. 4) at 09:00 AM – MGM Grand | Level 1 | Grand 116

SVS324 | Implementing security best practices for serverless applications

Wednesday (Dec. 4) at 10:30 AM – MGM Grand | Level 1 | Grand 122

API311 | Application integration for platform builders

Wednesday (Dec. 4) at 04:00 PM – MGM Grand | Level 3 | Premier 318

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Continue your AWS serverless learning

Learn at your

own pace

Increase your

knowledge

Earn an AWS

serverless badge

Expand your serverless

skills with our learning plans

on AWS Skill Builder

Use our Ramp-Up Guides

to build your serverless

knowledge

Demonstrate your

knowledge by achieving

digital badges

https://s12d.com/serverless-learning

https://s12d.com/serverless-learning

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Best practices, for everyone

Batch processing

REST/GraphQL API

Input/output validation

Config management

Secrets handling

Idempotency

Observability

BYO middleware

Self-documented schemas
Feature flags

Data extractionCaching

Powertools for

AWS Lambda

Streaming

*Feature set may vary across languages

Python | TypeScript | Java | .NET

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Thank you!

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Please complete the session
survey in the mobile app

Anand Bilgaiyan

/in/anand-bilgaiyan

Nishant Dhiman

/in/nishant-dhiman

	Slide 1
	Slide 2: Optimize multi-tenant serverless architectures for agility and scale
	Slide 3: Agenda
	Slide 4: Unique challenges
	Slide 5: Serverless-powered multi-tenant approach
	Slide 6: Multi-tenant models
	Slide 7: Find the right mix of scale, cost, and experience
	Slide 8: Find the right mix of scale, cost, and experience
	Slide 9: Serverless implementation: Order service
	Slide 10: Multi-tenancy with AWS Lambda
	Slide 11: AWS Lambda deployment models
	Slide 12: Data isolation
	Slide 13: AWS Lambda isolation models: Amazon Verified Permissions
	Slide 14: Declarative way: Cedar policy language
	Slide 15: Verified Permissions: Multi-tenant approach
	Slide 16: Cost per tenant
	Slide 17: AWS Lambda layers for centralized logging and metrics collection
	Slide 18: Serverless: Cost per tenant
	Slide 19: Noisy neighbor
	Slide 20: Tier-based throttling with AWS Lambda and Amazon API Gateway
	Slide 21: Scaling multi-tenant applications with AWS Lambda
	Slide 22: What if you need more scale?
	Slide 23: AWS Lambda concurrency controls
	Slide 24: What if scaling too fast may overwhelm downstream systems?
	Slide 25: AWS Lambda concurrency controls
	Slide 26: Noisy neighbor and AWS Lambda concurrency
	Slide 27: Multi-tenancy best practices with AWS Lambda
	Slide 28: Integration use cases in multi-tenant solutions
	Slide 29: Integration patterns
	Slide 30: Serverless implementation: Fulfillment and shipment services
	Slide 31: Common questions
	Slide 32: Noisy neighbor
	Slide 33: Queue sharing based on tier
	Slide 34: Handling a noisy neighbor effectively: Rate Limit
	Slide 35: Configuring batch size for data isolation
	Slide 36: Configuring batch size for data isolation
	Slide 37: Data isolation and security: Message attributes
	Slide 38: Multi-tenancy best practices with Amazon SQS
	Slide 39: Event-driven use case considerations for multi-tenancy
	Slide 40: Event-driven ecommerce use case
	Slide 41: Event filtering and routing with Amazon EventBridge
	Slide 42: Routing events based on tiers
	Slide 43: Optimizing the number of rules
	Slide 44: Filtering events using wildcard pattern matching
	Slide 45: Hybrid approach: Bridge model
	Slide 46: Summary: Amazon EventBridge
	Slide 47: Key takeaways
	Slide 48: Check out these other sessions
	Slide 49: Continue your AWS serverless learning
	Slide 50: Best practices, for everyone
	Slide 51

