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Unique challenges 

Noisy neighbor

Scaling integration 

Tenant isolation 

Cost attribution Inefficient  

resource utilization 
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Serverless-powered multi-tenant approach

Tenant consumption Cost, scale, performance
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Time

No infrastructure 

provisioning, 

no management

Automatic scaling

Pay for value

Highly available 

and secure
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Multi-tenant models 

Tenant 1

Silo

Microservice

WebApp

Microservice

Tenant 2

Microservice

WebApp
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Bridge

Tenant 1

Microservice

WebApp

Tenant 2

Microservice

Pool

Tenants 1–N
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Microservice

Microservice

Microservice
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Find the right mix of scale, cost, and experience
O U R  E C O M M E R C E  U S E  C A S E

Product service

Fulfillment  

service

Shipment 

service

Database

Order service

Event

Invoice service

Order fulfillment and shipment workflowOrder creation
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Find the right mix of scale, cost, and experience
O U R  E C O M M E R C E  U S E  C A S E

Product service

Fulfillment  

service

Shipment 
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Order service
Invoice service

Order fulfillment and shipment workflowOrder creation

Database

Event
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Serverless implementation: Order service

AWS Lambda Amazon EventBridgeAmazon API gateway

Amazon DynamoDB

Event
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Multi-tenancy with AWS Lambda 
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AWS Lambda deployment models

Order

Application services

Tenant 1 Tenant 2 Tenant 3

Product Order

Tenant 4

Product

Pooled tenants
(premium, standard, basic tiers)

Siloed tenants
(platinum tier)

Order Product

Tenant 5

AWS 

CodePipeline
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Data isolation
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Amazon 

Cognito

Underlying 

endpoint
Amazon

API Gateway

Authenticate

Invoke action Validate token

Authorization logic is 

coded into application

Application

Amazon 

Verified Permissions

Policy store

Request

Query

Access decision

RBAC and ABAC

1

2 3

4

1

2

3

4

AWS Lambda isolation models: 
Amazon Verified Permissions
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          permit (

      principal in MultitenantApp::Role::"allAccessRole",

           

                     action in [

  MultitenantApp::Action::”CreateOrder",

               MultitenantApp::Action::”ViewOrder”

       ],

                  resource

  )

              when  {

                 resource in principal.Tenant &&

    principal.account_lockout_flag == false &&

                context.uses_mfa == true 

   };

Implement app permissions as Cedar policies

• Cedar is easy to read and write

• Separate policies are easy to audit and change

• Cedar validator helps prevent policy mistakes

Verified Permissions policy example 

Declarative way: Cedar policy language 
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Tenant 1 Tenant 2

Amazon

API Gateway

Amazon 

Verified Permissions 

– policy store 1

Amazon 

Verified Permissions 

– policy store 2

Backend logic/authorizer 

Tenant 1 Tenant 2

Amazon

API Gateway

Amazon 

Verified Permissions 

Tenant 1 & 2 policy store

{

                              “sub”: ”12345”,

                              “name”: ”Alice”,

                                          “tenantId”: ”Tenant-1”,

                                              “policyStoreid”: ”store-1”

}

Tenant isolation 

Backend logic/authorizer 

AWS Lambda AWS Lambda

{

                              “sub”: ”67890”,

                              “name”: ”Bob”,

                                          “tenantId”: ”Tenant-2”,

                                               “policyStoreid”: ”store-2”

}

{

                              “sub”: ”12345”,

                              “name”: ”Alice”,

                                          “tenantId”: ”Tenant-1”,

}

{

                              “sub”: ”67890”,

                              “name”: ”Bob”,

                                          “tenantId”:”Tenant-2”,

}

Verified Permissions: Multi-tenant approach
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Cost per tenant
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Product

AWS Lambda layers for centralized logging and 
metrics collection

Order

Logging Metrics

Identity token

Decode token

Log (tenant-identity) RecordMetrics (tenant-identity)

Identity token

Lambda layers

AWS Lambda AWS Lambda
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Serverless: Cost per tenant
C A P T U R E  A N D  S T O R E  T E L E M E T R Y

Lambda

• Duration

• Number of 

invocations

Amazon API 

Gateway

• Number of requests

Amazon API 

Gateway

AWS Lambda

authorizer

{ tenantId: 1 }

AWS Lambda 

layers

AWS Lambda

Extract 

tenantId
{ tenantId: 1 }

Amazon 

CloudWatch

Amazon 

DynamoDB

JWT (tenantId)

Tenant users

Cost per tenant 

Amazon Cognito
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Noisy neighbor 
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Tier-based throttling with AWS Lambda and 
Amazon API Gateway

Basic tier Standard tier Platinum 1 Platinum 2

JWTJWT JWT JWT

Amazon API Gateway

AWS Lambda 

custom 

authorizer

TenantId → Tenant tier → API key 

Authorizer 
policy

API key → Usage plan

Product

Application services

Order

Throttling policies applied

AWS Lambda AWS Lambda

Amazon DynamoDB
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Scaling multi-tenant applications 
with AWS Lambda

Function quota

Scaling rate per function, 
in each Region

1,000 new concurrent executions 
every 10 seconds

Account concurrency

Maximum concurrency in a given 
Region across all functions

1,000 in all Regions

This can NOT be increasedThis can be increased
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What if you need more scale?
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AWS Lambda concurrency controls 

Provisioned concurrency

Sets floor on minimum number of 
execution environments

Pre-warm execution environments 
to reduce cold-start impact

Burst to use standard concurrency, 
if desired

Can save costs in certain situations



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What if scaling too fast may
overwhelm downstream systems?
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AWS Lambda concurrency controls

Reserved concurrency

Sets ceiling on maximum number of 
execution environments – upper limit 
on maximum concurrency for a given 
function

Also, reserves that concurrency from 
the account’s quota
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Noisy neighbor and AWS Lambda concurrency

Microservice Microservice

Microservice Microservice

Microservice Microservice

Microservice Microservice

Microservice Microservice

Microservice Microservice

Basic tier

    Reserve concurrency = 100

Advanced tier

 Reserve concurrency = 300 

Premium tier

Reserve concurrency = All unreserved

Noisy neighbor
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Multi-tenancy best practices with AWS Lambda

Use Amazon Verified Permissions for isolation

Leverage Lambda layers for logs and metrics consumption to 

determine cost per tenant

Control scale and noisy neighbors with AWS Lambda reserved 

concurrency and Amazon API Gateway usage plan
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Integration use cases in 
multi-tenant solutions 
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Integration patterns

Asynchronous 

Sender Receiver

M1 M2 M1 M2

Queue

Ack Ack

Synchronous

Receiver

Request

Response

Sender

Subscribers

B AC

Topic

B AC

B AC

B AC

Publisher

Publish/subscribe 
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Serverless implementation: Fulfillment and 
shipment services

Amazon 

EventBridge

Amazon SQS AWS Lambda

Fulfillment service Shipment service

Amazon 

EventBridge

Event
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Common questions

Should I share my resources across tenants?

What if one tenant produces more messages?

What about data isolation? How to handle errors?

Operational complexity?
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Noisy neighbor

3 5 1 4 2 1 3 2 1

Order queue OutIn

Tenant A Tenant B Tenant C

• Solve noisy neighbor problem while continuing to meet the isolation 

requirements of tenants

• At the same time, remain agile, simplify operations, and optimize costs

Tenant A causing noisy neighbor
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Queue sharing based on tier

Order 

Create

Tenant A Tenant B

Tenant C

3 2 1 1

2

in out

in out

1

Standard tier

Platinum tier

Belong to standard tier

Belongs to platinum tier

2

3
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Handling a noisy neighbor effectively: Rate Limit 

Tenant 1

Tenant 2

…..

Tenant 3

Throw error

Process order
Check 

throttle
2 1 1

Ok

Too high

Order queue

API Gateway usage plans

Gold tier – 300 req/sec

Standard tier – 100 req/sec 

CreateOrder
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Configuring batch size for data isolation

Messages

Batch size = 10

AWS Lambda

Single invocation 

has access to cross-

tenants’ messages3 5

1 4 2

By default, batch size = 10
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Messages AWS Lambda

Processing 1 

message per 

invocation

3 5

1 4 2

Batch size = 1

1st invocation2nd invocation

Configuring batch size for data isolation
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Data isolation and security: Message attributes 

Amazon 

SQS
AWS Lambda

Extract tenant Id

Lambda layer

Backend 

systems

{SQS resource policies}

Message attributes with tenant’s context
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Multi-tenancy best practices with Amazon SQS

Configure the queue to delay messages to put off work until later

Avoid too many in-flight messages

Use dead-letter queues for messages that can’t be processed

Pass tenant context as message attributes while sharing queues 

across tenants
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Event-driven use case 
considerations for multi-tenancy
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Event-driven ecommerce use case

Product service

Fulfillment  

service

Database

Order service

Order creation

PackOrder

Amazon 

EventBridge

ShipOrder

Shipment 

service

Invoice service

GenerateInvoice
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Event filtering and routing with 
Amazon EventBridge

Fulfillment  

service

Invoice service

Order service Shipment service

Rule 1

Rule 2

Rule 3

Tenant1.oderCreated

Tenant2.oderCreated
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Routing events based on tiers 

{
  "source": ["order.service"],
  "detail": {
    "tenantId": ["tenant-xxxxx"],
    "tier": ["Gold"]
  },
  "detail-type": ["OrderCreated"],
  "resources": [],

   //. . . . additional attributes
}

An example event from Order Service

{
  "source": ["order.service"],
  "detail": {
    "tier": ["Gold"]
 }
}

Rule

Amazon EventBridge rule

Fulfillment  

service
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Optimizing the number of rules

{
  "source": ["shopping.cart.service"],
  "detail": {
    "tenantId": ["tenant-A"],
    "tier": ["Gold"]
  },
  "detail-type": 
[”shopping.cart.error.timeout"],
  "resources": [],

   //. . . . additional attributes
}

Event for Tenant A Event for Tenant B

{
  "source": ["shopping.inventory.service"],
  "detail": {
    "tenantId": ["tenant-B"],
    "tier": ["Gold"]
  },
  "detail-type”: 
["shopping.inventory.error.outofstock"],
  "resources": [],

   //. . . . additional attributes
}
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Filtering events using wildcard pattern matching

{ "source": [{ 
"prefix": "shopping." 
}], 
"detail-type": [{ 
"wildcard": "*.error.*" 
}],
"detail": { 
"tenantId": [{ "exists": true }] 
} }

Rule

Amazon EventBridge rule

Incident 

management 

systemEvents from tenants

Wildcard pattern matching 

Fewer rules results in 

increased operational 

excellence
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Custom event bus

Tenant A

 New order created

Shared event bus

Tenant  B

 Order canceled

Tenant C

 Order tracking updated

Rules

Tenant A

 Invoice processing function

Tenant B

 Invoice processing workflow

Hybrid approach: Bridge model
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Summary: Amazon EventBridge

Use a single rule per subscriber

Avoid using the default event bus for custom events

Use wildcard pattern matching wherever feasible

With a pool model, you get a centralized bus with 

resource limits applicable
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Key takeaways

Architectural design: Select the right multi-tenant model, 

externalize data isolation

01

Cost optimization: Use Lambda layers, execute asynchronously 

when possible

02

To avoid noisy neighbors: Implement rate limiting, 

a tier-based strategy, and capacity reservation

03

Scalability and agility: Leverage low-code integration, 

serverless microservices
04
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Check out these other sessions

API306 | Integration patterns for distributed systems

Wednesday (Dec. 4) at 09:00 AM – MGM Grand | Level 1 | Grand 116

SVS324 | Implementing security best practices for serverless applications

Wednesday (Dec. 4) at 10:30 AM – MGM Grand | Level 1 | Grand 122

API311 | Application integration for platform builders

Wednesday (Dec. 4) at 04:00 PM – MGM Grand | Level 3 | Premier 318
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Continue your AWS serverless learning

Learn at your

own pace

Increase your

knowledge

Earn an AWS

serverless badge

Expand your serverless

skills with our learning plans

on AWS Skill Builder

Use our Ramp-Up Guides

to build your serverless

knowledge

Demonstrate your

knowledge by achieving

digital badges

https://s12d.com/serverless-learning 

https://s12d.com/serverless-learning
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Best practices, for everyone

Batch processing

REST/GraphQL API

Input/output validation

Config management

Secrets handling

Idempotency

Observability

BYO middleware

Self-documented schemas
Feature flags

Data extractionCaching

Powertools for 

AWS Lambda

Streaming

*Feature set may vary across languages

Python | TypeScript | Java | .NET
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Thank you!
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Please complete the session 
survey in the mobile app

Anand Bilgaiyan

/in/anand-bilgaiyan

Nishant Dhiman

/in/nishant-dhiman
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