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Let’s talk about cars
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Let’s talk about cars
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Let’s talk about cars

Speed Engine RPM
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Let’s talk about cars
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Let’s talk about streaming data processing
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Let’s talk about streaming data processing

Data stream
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Streaming workloads use cases

Application 

click streams

Connected 

devices, IoT

Real-time anomaly

and fraud detection

Financial data, 

stock tickers
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Streaming workloads characteristics

Continuous Ordered Time-sensitiveHigh volume Spiky
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Consistent workloads 
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What is a spiky workload?

Growing backlog, delayed processing
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What is a spiky workload?

Overprovisioned capacity, can get expensive
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Serverless streaming on AWS

Amazon Kinesis

Data Streams

Apache Kafka

Amazon Managed 

Streaming for 

Apache Kafka 

(Amazon MSK)

AWS Lambda
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Let’s talk about streaming data processing

Concurrency

Event source

mappings

Common 

techniques

ESM-specific

techniques

What’s new

Action items
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Let’s dive 
deeper
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Understanding Lambda concurrency

AWS Lambda
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Understanding Lambda function concurrency
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Understanding Lambda function concurrency
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Understanding Lambda function concurrency
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Concurrency scaling rate – per function

Time

1,000 execution 

environments at t=0

1,000 additional execution 

environments every 10 

seconds

Account 

concurrency

quota (soft)

1,000

Concurrency
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Concurrency scaling rate – per function

From 0 to 16K
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Lambda monitoring

• Invocations

• Errors

• Throttles

• Duration

• ConcurrentExecutions

• ClaimedAccountConcurrency

https://docs.aws.amazon.com/lambda/latest/dg/monitoring-metrics.html 

https://docs.aws.amazon.com/lambda/latest/dg/monitoring-metrics.html
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Event sources

Invoke

Invoke

Invoke

Invoke

Amazon Kinesis

Data Streams

Apache Kafka

Amazon Managed 

Streaming for 

Apache Kafka
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Event source mappings

Invoke

Invoke

Invoke

Invoke

Function

Poll
Event source 

mappings 

(aka pollers)

Amazon Kinesis

Data Streams

Apache Kafka

Amazon Managed 

Streaming for 

Apache Kafka
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Event source mappings

Invoke

Invoke

Invoke

Invoke

Function

Event source mappings 

(aka pollers)

Poll

Filter Batch

Invoke
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Common 
techniques
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Improving throughput
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Improving throughput - concurrency
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Improving throughput - duration
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Improving throughput - filtering
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Improving throughput - batching
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Improving throughput

Parallelize data 

processing

Reduce processing 

duration

Filter irrelevant

messages out

Batch 

messages
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Event source mapping - polling

Short 

polling

Long 

polling
(0 seconds) (up to 300 seconds)
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Event source mapping - filtering
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Event source mapping - filtering

• 10,000 IoT sensors, emitting a telemetry message every minute

• Total ~450M messages/month 

• Lambda function with 256 MB, average duration 300ms, 50ms when doing nothing

• ~2.2% of messages result in action

Without filtering With filtering

Total messages to process 450M 10M

Total charge for requests $90 $2

Actionable messages 10M 10M

Irrelevant messages 440M 0

Processing compute duration 25M milliseconds 3M milliseconds

Total compute cost $200 $15
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Event source mapping - filtering

• 10,000 IoT sensors, emitting a telemetry message every minute

• Total ~450M messages/month 

• Lambda function with 256 MB, average duration 300ms, 50ms when doing nothing

• ~2.2% of messages result in action

92% cost 

reduction
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Event source mapping - batching
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Event source mapping - invoker

Batching 

window has 

elapsed

Batch 

is fullor

Batch size 

is 6MBor
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Event source mapping - IaC

Event source

Batch size and window

Filter criteria



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Event source 
specific techniques
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Streaming event source types

Producer

Producer

Producer

Producer

Producer

Producer

Consumer

Consumer

Consumer

Consumer

Consumer

Consumer
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Streaming event source types

Kinesis stream

Shard 1

Shard 2

Shard 3
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Streaming event source types

Kinesis stream

Shard 1

Shard 2

Shard 3

Kafka cluster

Broker 1

Topic A

Partition 0 Partition 1

Broker 1

Topic A

Partition 0 Partition 1

Broker 1

Topic A

Partition 0 Partition 1
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Terminology

Kinesis Kafka

Stream Topic

Shard Partition

Iterator Age Offset Lag

--- Broker

--- Cluster

Data “records”, ”events”, ”messages” are used interchangeably
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Kafka partitions/Kinesis shards

Producer

Producer

Producer

Producer

Producer

Producer

Consumer

Consumer

Consumer

Consumer

Consumer

Consumer

Kafka topic / Kinesis stream

Partition 0 / Shard 1

Partition 1 / Shard 2

Partition 2 / Shard 3

1 2 3 4 5 6

old new

1 2 3 4 5 6 7

1 2 3 4 5 6 7 8
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Kafka partitions/Kinesis shards

Kafka topic / Kinesis stream

Partition 0 / Shard 1

Partition 1 / Shard 2

Partition 2 / Shard 3

Hash

function

Producer

Producer

Producer

PK1

PK2

PK3

PK1

PK2

PK4

PK1

PK3

PK4

Producer PK4 PK4 PK1

PK3PK3PK2 PK2

PK1 PK1 PK1PK1

PK4 PK4PK4 PK4

old new
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Amazon Kinesis
Data Streams
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Consuming Kinesis Data Stream

Kinesis stream

Shard 1

Shard 2

Shard 3

Shard 4

Consumer

Consumer

Consumer

Consumer

Consumer

Producer

Producer

Producer

Producer

Producer

Producer
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Consuming Kinesis – shared-throughput (standard)

Shared throughput

~200 latency

Consumer

Consumer

Consumer

Consumer

Consumer

Kinesis stream

Shard 1

Shard 2

Shard 3

Shard 4

5 reads/sec

2MB/sec

(polling)
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Consuming Kinesis – enhanced fan-out (EFO)

Consumer

Consumer

Consumer

Consumer

Consumer

Kinesis stream

Shard 1

Shard 2

Shard 3

Shard 4

2MB/sec

per consumer

(pushing)

Dedicated 

throughput

Latencies as low 

as 70ms

Does not contend 

with 2MB/sec 

standard 

consumers

Up to 20 EFO 

consumers per

stream
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Consuming Kinesis with Lambda ESM

Kinesis stream

Event source mapping

(aka Kinesis consumer)

1 2

1 2 3 1

Shard 1

1 2 1 2

1 2 3

Shard 2

1

1 2Poller
(poll, filter, batch, invoke)

Poller
(poll, filter, batch, invoke)



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Consuming Kinesis with Lambda ESM

Kinesis stream

1 2 1 2
1 2

Shard 3

1 2

Shard 1

1 2 1 2

1 2 3

Shard 2

1

1 2

1 2 3 1

1 2Poller
(poll, filter, batch, invoke)

Poller
(poll, filter, batch, invoke)

Poller
(poll, filter, batch, invoke)

Event source mapping

(aka Kinesis consumer)
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Consuming Kinesis with Lambda ESM

Kinesis stream parallelization-factor=1

Shard 1

1 2 1 2

1 2 3

Shard 2

1

1 2

Shard 3

1 2
1 2 1 2

1 2

1 2 3 1

1 2Poller
(poll, filter, batch, invoke)

Poller
(poll, filter, batch, invoke)

Poller
(poll, filter, batch, invoke)

Event source mapping

(aka Kinesis consumer)
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Consuming Kinesis with Lambda ESM

Kinesis stream

1 2

1 2 3

1

1 2

1 2

parallelization-factor=2

1 2

Shard 1

1 2 1 2

1 2 3

Shard 2

1

1 2

Shard 3

1 2

Poller
(poll, filter, batch, invoke)

Poller
(poll, filter, batch, invoke)

Poller
(poll, filter, batch, invoke)

Event source mapping

(aka Kinesis consumer)
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Kinesis monitoring

PutRecords.Success

GetRecords.Success

IncomingBytes / IncomingRecords

OutgoingBytes / OutgoingRecords

IteratorAgeMilliseconds

ReadProvisionedThroughputExceeded

WriteProvisionedThroughputExceeded

Invocations

Errors

Throttles

Duration

ConcurrentExecutions

ClaimedAccountConcurrency

IteratorAge
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Iterator age is growing rapidly?

• How many Lambda functions are subscribed to the stream?

• Does the Lambda function show any errors or throttles?

• Is there a large increase in IncomingRecords or 

IncomingBytes?

• Update Lambda to log records causing errors and return 

successfully

• Scale Lambda concurrency with parallelization factor

• Increase memory allocated to the Lambda function
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Amazon MSK 
Apache Kafka
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Consuming Kafka with Lambda - scaling

Kafka topic

Event source mappings 

(aka pollers)

1 2

1 2 3

1 2 3

1 2

Partition 0

Partition 1

Partition 2

1 2 1 2

1 2 3

1 2 3

Poller
(poll, filter, batch, invoke)

Poller
(poll, filter, batch, invoke)
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Consuming Kafka with Lambda - scaling

Kafka topic

Event source mappings 

(aka pollers)

1 2

1 2 3

1 2 3

1 2
1 2 1 2

1 2 3

1 2 3

Partition 0

Partition 1

Partition 2

Poller
(poll, filter, batch, invoke)

Poller
(poll, filter, batch, invoke)
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Consuming Kafka with Lambda - scaling

Kafka topic

Event source mappings 

(aka pollers)

1 2

1 2 3

1 2 3

1 2
1 2 1 2

1 2 3

1 2 3

Partition 0

Partition 1

Partition 2
Poller

(poll, filter, batch, invoke)

Poller
(poll, filter, batch, invoke)

Poller
(poll, filter, batch, invoke)
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Kafka monitoring

PartitionCount

BytesInPerSec

BytesOutPerSec

MaxOffsetLag

OffsetLag

Throttles

Duration

ConcurrentExecutions

ClaimedAccountConcurrency

OffsetLag

https://docs.aws.amazon.com/lambda/latest/dg/monitoring-metrics.html 

https://docs.aws.amazon.com/lambda/latest/dg/monitoring-metrics.html
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“My Kafka workload is very 

spiky, latency sensitive, and 

requires faster, predictable 

performance”

But what if…
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Announcing Provisioned Mode for Kafka ESM

NEW

Configurable minimum and 

maximum number of 

always-on event pollers

Faster scaling, great for 

latency-sensitive 

workloads
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Announcing Provisioned Mode for Kafka ESM NEW
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Let’s see the performance difference

• BatchSize = 50

• Batching window = 1 sec

• Mean duration = 200ms

• Min pollers = 5

Producers

• MSK cluster

• 2 brokers

• 1 topic

• 100  partitions

• Record size 1.5KB

• Random partition key

• Initial traffic – 3,000 

records / second

• Traffic spike – 9,000 

records / second
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On-demand vs. provisioned ESM performance

3000 records/sec

Kafka ESM – on-demand mode
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On-demand vs. provisioned ESM performance

9000 records/sec

Kafka ESM – on-demand mode
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On-demand vs. provisioned ESM performance

~7 minutes

9000 records/sec

Kafka ESM – on-demand mode
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On-demand vs. provisioned ESM performance

~7 minutes

9000 records/sec

Kafka ESM – on-demand mode



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

On-demand vs. provisioned ESM performance

~7 minutes ~15 minutes

9000 records/sec

Kafka ESM – on-demand mode
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On-demand vs. provisioned ESM performance
Kafka ESM – on-demand mode

Kafka ESM – provisioned mode (min=5)
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On-demand vs. provisioned ESM performance
Kafka ESM – on-demand mode

Kafka ESM – provisioned mode (min=5)

~60,000 at peak

~3,000,000 at peak
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Remember the spiky workload?
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Remember the spiky workload?
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Observability
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Event source mappings observability

Event source 

mappings
Functions

PutRecords.Success

GetRecords.Success

IncomingBytes / IncomingRecords

OutgoingBytes / OutgoingRecords

IteratorAgeMilliseconds

consumer_lag

consumer_offset

Invocations

Errors

Throttles

Duration

ConcurrentExecutions

ClaimedAccountConcurrency

IteratorAge

OffsetLag
?

Event 

sources
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Announcing Enhanced ESM Observability

Detailed out-of-the-box ESM metrics 

providing insights into the state of 

ingested messages 

NEW
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Announcing Enhanced ESM Observability NEW
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Announcing Enhanced ESM Observability NEW
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Announcing Enhanced ESM Observability

Amazon

SQS

DynamoDB

streams

Kinesis data 

streams

PolledEventCount

FilteredOutEventCount

InvokedEventCount

FailedInvokeEventCount

DeletedEventCount

DroppedEventCount

OnFailureDestinationDeliveredEventCount

NEW
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Wrapping up
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Improving throughput

Process data 

in parallel

Reduce processing 

duration

Filter irrelevant

messages out

Batch 

messages

Gracefully handle 

failures
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Improving throughput

Evenly distribute records 

with partition key

Increase the number 

of partitions/shards

Buffer at the 

producer side

Increase parallelization 

factor (Kinesis)

Use enhanced 

fan-out (Kinesis)
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Next steps

https://aal80.github.io/reinvent2024-svs217

https://aal80.github.io/reinvent2024-svs217/
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Check out these other sessions
SVS321 AWS Lambda and Apache Kafka for real-time data processing (Breakout)
Watch on YouTube in a few weeks

SVS406 Scale streaming workloads with AWS Lambda (Chalk talk)
Thu Dec 05 16:00 - MGM Grand Premier 309

SVS216 Serverless data processing with AWS Lambda and Apache Kafka (Builder)
Wed Dec 04 08:30 - Mandalay Bay Surf B

SVS407 Understanding AWS Lambda event source mapping (Chalk talk)
Wed Dec 04 12:00 - MGM Grand Premier 320

SVS309 Building EDAs with Apache Kafka and Amazon EventBridge (Chalk talk)
Wed Dec 04 08:30 - Caesars Forum Academy 416
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Continue your AWS Serverless learning

Learn at your

own pace

Increase your

knowledge

Earn AWS

Serverless badge

Expand your serverless

skills with our learning plans

on AWS Skill Builder

Use our AWS Ramp-Up Guides

to build your serverless

knowledge

Demonstrate your

knowledge by achieving

digital badges

https://s12d.com/serverless-learning 

https://s12d.com/serverless-learning
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Thank you!
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Please complete the session 
survey in the mobile app

Anton Aleksandrov 

antonal80
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