
© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Improve throughput and
monitoring of serverless
streaming workloads

Anton Aleksandrov

S V S 2 1 7 - N E W

Principal Solutions Architect, Serverless

AWS

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Let’s talk about cars

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Max speed Acceleration

Let’s talk about cars

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Let’s talk about cars

Speed

Time

Max speed

Time to max speed

Miles/Km per hour

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Let’s talk about cars

Speed Engine RPM

Tire pressureGas remaining

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Let’s talk about cars

msg

msg

msg

msg

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Let’s talk about streaming data processing

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Let’s talk about streaming data processing

Data stream

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Streaming workloads use cases

Application

click streams

Connected

devices, IoT

Real-time anomaly

and fraud detection

Financial data,

stock tickers

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Streaming workloads characteristics

Continuous Ordered Time-sensitiveHigh volume Spiky

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Consistent workloads

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What is a spiky workload?

Growing backlog, delayed processing

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What is a spiky workload?

Overprovisioned capacity, can get expensive

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Serverless streaming on AWS

Amazon Kinesis

Data Streams

Apache Kafka

Amazon Managed

Streaming for

Apache Kafka

(Amazon MSK)

AWS Lambda

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Let’s talk about streaming data processing

Concurrency

Event source

mappings

Common

techniques

ESM-specific

techniques

What’s new

Action items

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Let’s dive
deeper

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Understanding Lambda concurrency

AWS Lambda

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Understanding Lambda function concurrency

Time

Invoke 1

Active

Idle

1

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Understanding Lambda function concurrency

Time

Invoke 1

Active

Idle

1

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Understanding Lambda function concurrency

Time

Invoke 2

Active

Idle

21

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Understanding Lambda function concurrency

Time

Invoke 3

Active

Idle

21

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Understanding Lambda function concurrency

Time

Invoke 3

Active

Idle

21

3

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Understanding Lambda function concurrency

Time

Invoke 4

Active

Idle

21

3

4

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Understanding Lambda function concurrency

Time

Active

Idle

21

3

4Invoke 5

Invoke 6

5

6

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Understanding Lambda function concurrency

Time

Active

Idle

21

3

4
Invoke 7

Invoke 8

5

6
Invoke 9

7

8

9

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Understanding Lambda function concurrency

Time

Active

Idle

21

3

4

Invoke 10

Invoke 11 5

6Invoke 12

7

8

9
Invoke 13

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Understanding Lambda function concurrency

Time

Active

Idle

21

3

4

Invoke 10

Invoke 11

5

6

Invoke 12

7

8

9

Invoke 13

10

11

12

13

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Understanding Lambda function concurrency

1 4 5

6

7

8

9

10

11

12

13

2

3

1

2

3

4

5

6

7

Active

Idle

ConcurrentExecutions

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Concurrency scaling rate – per function

Time

1,000 execution

environments at t=0

1,000 additional execution

environments every 10

seconds

Account

concurrency

quota (soft)

1,000

Concurrency

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Concurrency scaling rate – per function

From 0 to 16K

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Lambda monitoring

• Invocations

• Errors

• Throttles

• Duration

• ConcurrentExecutions

• ClaimedAccountConcurrency

https://docs.aws.amazon.com/lambda/latest/dg/monitoring-metrics.html

https://docs.aws.amazon.com/lambda/latest/dg/monitoring-metrics.html

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Event sources

Invoke

Invoke

Invoke

Invoke

Amazon Kinesis

Data Streams

Apache Kafka

Amazon Managed

Streaming for

Apache Kafka

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Event source mappings

Invoke

Invoke

Invoke

Invoke

Function

Poll
Event source

mappings

(aka pollers)

Amazon Kinesis

Data Streams

Apache Kafka

Amazon Managed

Streaming for

Apache Kafka

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Event source mappings

Invoke

Invoke

Invoke

Invoke

Function

Event source mappings

(aka pollers)

Poll

Filter Batch

Invoke

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Common
techniques

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Improving throughput

Processing

t=0 t=1

MSG

MSG

MSG

MSG

MSG

MSG

MSG

MSG

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Improving throughput - concurrency

ProcessingMSG

MSG

MSG

Processing

Processing

Processing

MSG

MSG

MSG

MSGMSG

MSG

MSG

MSG

x4

t=0 t=1

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Improving throughput - duration

Processing

Processing

Processing

Processing

Processing

Processing

Processing

Processing

MSG

MSG

MSGMSG

MSG

MSG

MSGMSG

MSG

MSG

MSG

MSG

MSG

MSG

MSG

MSG

MSG

MSG

MSG

MSG

x8

t=0 t=1

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Improving throughput - filtering

Processing

Processing

Processing

Processing

Processing

Processing

Processing

Processing

MSG

MSG

MSG

MSG

MSG

MSG

MSG

MSG

MSG

MSG

MSG

MSG

MSG

MSG

MSG

MSG

MSG

MSG

MSG

MSG

MSG

MSG

MSG

MSG

x16

t=0 t=1

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Improving throughput - batching

Processing

Processing

Processing

Processing

Processing

Processing

Processing

Processing

MSGMSGMSGMSG

MSGMSGMSGMSG

MSGMSGMSGMSG

MSGMSGMSGMSG

MSGMSGMSGMSG

MSGMSGMSGMSG

MSGMSGMSGMSG

MSGMSGMSGMSG

x32

t=0 t=1

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Improving throughput

Parallelize data

processing

Reduce processing

duration

Filter irrelevant

messages out

Batch

messages

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Event source mapping - polling

Short

polling

Long

polling
(0 seconds) (up to 300 seconds)

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Event source mapping - filtering

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Event source mapping - filtering

• 10,000 IoT sensors, emitting a telemetry message every minute

• Total ~450M messages/month

• Lambda function with 256 MB, average duration 300ms, 50ms when doing nothing

• ~2.2% of messages result in action

Without filtering With filtering

Total messages to process 450M 10M

Total charge for requests $90 $2

Actionable messages 10M 10M

Irrelevant messages 440M 0

Processing compute duration 25M milliseconds 3M milliseconds

Total compute cost $200 $15

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Event source mapping - filtering

• 10,000 IoT sensors, emitting a telemetry message every minute

• Total ~450M messages/month

• Lambda function with 256 MB, average duration 300ms, 50ms when doing nothing

• ~2.2% of messages result in action

Without filtering With filtering

Total messages to process 450M 10M

Total charge for requests $90 $2

Actionable messages 10M 10M

Irrelevant messages 440M 0

Processing compute duration 25M milliseconds 3M milliseconds

Total compute cost $200 $15

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Event source mapping - filtering

• 10,000 IoT sensors, emitting a telemetry message every minute

• Total ~450M messages/month

• Lambda function with 256 MB, average duration 300ms, 50ms when doing nothing

• ~2.2% of messages result in action

Without filtering With filtering

Total messages to process 450M 10M

Total charge for requests $90 $2

Actionable messages 10M 10M

Irrelevant messages 440M 0

Processing compute duration 25M milliseconds 3M milliseconds

Total compute cost $200 $15

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Event source mapping - filtering

• 10,000 IoT sensors, emitting a telemetry message every minute

• Total ~450M messages/month

• Lambda function with 256 MB, average duration 300ms, 50ms when doing nothing

• ~2.2% of messages result in action

92% cost

reduction

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Event source mapping - batching

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Event source mapping - invoker

Batching

window has

elapsed

Batch

is fullor

Batch size

is 6MBor

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Event source mapping - IaC

Event source

Batch size and window

Filter criteria

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Event source
specific techniques

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Streaming event source types

Producer

Producer

Producer

Producer

Producer

Producer

Consumer

Consumer

Consumer

Consumer

Consumer

Consumer

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Streaming event source types

Kinesis stream

Shard 1

Shard 2

Shard 3

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Streaming event source types

Kinesis stream

Shard 1

Shard 2

Shard 3

Kafka cluster

Broker 1

Topic A

Partition 0 Partition 1

Broker 1

Topic A

Partition 0 Partition 1

Broker 1

Topic A

Partition 0 Partition 1

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Terminology

Kinesis Kafka

Stream Topic

Shard Partition

Iterator Age Offset Lag

--- Broker

--- Cluster

Data “records”, ”events”, ”messages” are used interchangeably

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Kafka partitions/Kinesis shards

Producer

Producer

Producer

Producer

Producer

Producer

Consumer

Consumer

Consumer

Consumer

Consumer

Consumer

Kafka topic / Kinesis stream

Partition 0 / Shard 1

Partition 1 / Shard 2

Partition 2 / Shard 3

1 2 3 4 5 6

old new

1 2 3 4 5 6 7

1 2 3 4 5 6 7 8

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Kafka partitions/Kinesis shards

Kafka topic / Kinesis stream

Partition 0 / Shard 1

Partition 1 / Shard 2

Partition 2 / Shard 3

Hash

function

Producer

Producer

Producer

PK1

PK2

PK3

PK1

PK2

PK4

PK1

PK3

PK4

Producer PK4 PK4 PK1

PK3PK3PK2 PK2

PK1 PK1 PK1PK1

PK4 PK4PK4 PK4

old new

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Amazon Kinesis
Data Streams

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Consuming Kinesis Data Stream

Kinesis stream

Shard 1

Shard 2

Shard 3

Shard 4

Consumer

Consumer

Consumer

Consumer

Consumer

Producer

Producer

Producer

Producer

Producer

Producer

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Consuming Kinesis – shared-throughput (standard)

Shared throughput

~200 latency

Consumer

Consumer

Consumer

Consumer

Consumer

Kinesis stream

Shard 1

Shard 2

Shard 3

Shard 4

5 reads/sec

2MB/sec

(polling)

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Consuming Kinesis – enhanced fan-out (EFO)

Consumer

Consumer

Consumer

Consumer

Consumer

Kinesis stream

Shard 1

Shard 2

Shard 3

Shard 4

2MB/sec

per consumer

(pushing)

Dedicated

throughput

Latencies as low

as 70ms

Does not contend

with 2MB/sec

standard

consumers

Up to 20 EFO

consumers per

stream

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Consuming Kinesis with Lambda ESM

Kinesis stream

Event source mapping

(aka Kinesis consumer)

1 2

1 2 3 1

Shard 1

1 2 1 2

1 2 3

Shard 2

1

1 2Poller
(poll, filter, batch, invoke)

Poller
(poll, filter, batch, invoke)

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Consuming Kinesis with Lambda ESM

Kinesis stream

1 2 1 2
1 2

Shard 3

1 2

Shard 1

1 2 1 2

1 2 3

Shard 2

1

1 2

1 2 3 1

1 2Poller
(poll, filter, batch, invoke)

Poller
(poll, filter, batch, invoke)

Poller
(poll, filter, batch, invoke)

Event source mapping

(aka Kinesis consumer)

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Consuming Kinesis with Lambda ESM

Kinesis stream parallelization-factor=1

Shard 1

1 2 1 2

1 2 3

Shard 2

1

1 2

Shard 3

1 2
1 2 1 2

1 2

1 2 3 1

1 2Poller
(poll, filter, batch, invoke)

Poller
(poll, filter, batch, invoke)

Poller
(poll, filter, batch, invoke)

Event source mapping

(aka Kinesis consumer)

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Consuming Kinesis with Lambda ESM

Kinesis stream

1 2

1 2 3

1

1 2

1 2

parallelization-factor=2

1 2

Shard 1

1 2 1 2

1 2 3

Shard 2

1

1 2

Shard 3

1 2

Poller
(poll, filter, batch, invoke)

Poller
(poll, filter, batch, invoke)

Poller
(poll, filter, batch, invoke)

Event source mapping

(aka Kinesis consumer)

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Kinesis monitoring

PutRecords.Success

GetRecords.Success

IncomingBytes / IncomingRecords

OutgoingBytes / OutgoingRecords

IteratorAgeMilliseconds

ReadProvisionedThroughputExceeded

WriteProvisionedThroughputExceeded

Invocations

Errors

Throttles

Duration

ConcurrentExecutions

ClaimedAccountConcurrency

IteratorAge

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Iterator age is growing rapidly?

• How many Lambda functions are subscribed to the stream?

• Does the Lambda function show any errors or throttles?

• Is there a large increase in IncomingRecords or

IncomingBytes?

• Update Lambda to log records causing errors and return

successfully

• Scale Lambda concurrency with parallelization factor

• Increase memory allocated to the Lambda function

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Amazon MSK
Apache Kafka

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Consuming Kafka with Lambda - scaling

Kafka topic

Event source mappings

(aka pollers)

1 2

1 2 3

1 2 3

1 2

Partition 0

Partition 1

Partition 2

1 2 1 2

1 2 3

1 2 3

Poller
(poll, filter, batch, invoke)

Poller
(poll, filter, batch, invoke)

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Consuming Kafka with Lambda - scaling

Kafka topic

Event source mappings

(aka pollers)

1 2

1 2 3

1 2 3

1 2
1 2 1 2

1 2 3

1 2 3

Partition 0

Partition 1

Partition 2

Poller
(poll, filter, batch, invoke)

Poller
(poll, filter, batch, invoke)

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Consuming Kafka with Lambda - scaling

Kafka topic

Event source mappings

(aka pollers)

1 2

1 2 3

1 2 3

1 2
1 2 1 2

1 2 3

1 2 3

Partition 0

Partition 1

Partition 2
Poller

(poll, filter, batch, invoke)

Poller
(poll, filter, batch, invoke)

Poller
(poll, filter, batch, invoke)

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Kafka monitoring

PartitionCount

BytesInPerSec

BytesOutPerSec

MaxOffsetLag

OffsetLag

Throttles

Duration

ConcurrentExecutions

ClaimedAccountConcurrency

OffsetLag

https://docs.aws.amazon.com/lambda/latest/dg/monitoring-metrics.html

https://docs.aws.amazon.com/lambda/latest/dg/monitoring-metrics.html

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

“My Kafka workload is very

spiky, latency sensitive, and

requires faster, predictable

performance”

But what if…

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Announcing Provisioned Mode for Kafka ESM

NEW

Configurable minimum and

maximum number of

always-on event pollers

Faster scaling, great for

latency-sensitive

workloads

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Announcing Provisioned Mode for Kafka ESM NEW

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Let’s see the performance difference

• BatchSize = 50

• Batching window = 1 sec

• Mean duration = 200ms

• Min pollers = 5

Producers

• MSK cluster

• 2 brokers

• 1 topic

• 100 partitions

• Record size 1.5KB

• Random partition key

• Initial traffic – 3,000

records / second

• Traffic spike – 9,000

records / second

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Let’s see the performance difference

• BatchSize = 50

• Batching window = 1 sec

• Mean duration = 200ms

• Min pollers = 5

Producers

• MSK cluster

• 2 brokers

• 1 topic

• 100 partitions

• Record size 1.5KB

• Random partition key

• Initial traffic – 3,000

records / second

• Traffic spike – 9,000

records / second

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

On-demand vs. provisioned ESM performance

3000 records/sec

Kafka ESM – on-demand mode

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

On-demand vs. provisioned ESM performance

9000 records/sec

Kafka ESM – on-demand mode

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

On-demand vs. provisioned ESM performance

~7 minutes

9000 records/sec

Kafka ESM – on-demand mode

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

On-demand vs. provisioned ESM performance

~7 minutes

9000 records/sec

Kafka ESM – on-demand mode

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

On-demand vs. provisioned ESM performance

~7 minutes ~15 minutes

9000 records/sec

Kafka ESM – on-demand mode

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

On-demand vs. provisioned ESM performance
Kafka ESM – on-demand mode

Kafka ESM – provisioned mode (min=5)

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

On-demand vs. provisioned ESM performance
Kafka ESM – on-demand mode

Kafka ESM – provisioned mode (min=5)

~60,000 at peak

~3,000,000 at peak

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Remember the spiky workload?

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Remember the spiky workload?

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Observability

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Event source mappings observability

Event source

mappings
Functions

PutRecords.Success

GetRecords.Success

IncomingBytes / IncomingRecords

OutgoingBytes / OutgoingRecords

IteratorAgeMilliseconds

consumer_lag

consumer_offset

Invocations

Errors

Throttles

Duration

ConcurrentExecutions

ClaimedAccountConcurrency

IteratorAge

OffsetLag
?

Event

sources

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Announcing Enhanced ESM Observability

Detailed out-of-the-box ESM metrics

providing insights into the state of

ingested messages

NEW

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Announcing Enhanced ESM Observability NEW

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Announcing Enhanced ESM Observability NEW

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Announcing Enhanced ESM Observability NEW

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Announcing Enhanced ESM Observability NEW

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Announcing Enhanced ESM Observability

Amazon

SQS

DynamoDB

streams

Kinesis data

streams

PolledEventCount

FilteredOutEventCount

InvokedEventCount

FailedInvokeEventCount

DeletedEventCount

DroppedEventCount

OnFailureDestinationDeliveredEventCount

NEW

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Wrapping up

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Improving throughput

Process data

in parallel

Reduce processing

duration

Filter irrelevant

messages out

Batch

messages

Gracefully handle

failures

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Improving throughput

Evenly distribute records

with partition key

Increase the number

of partitions/shards

Buffer at the

producer side

Increase parallelization

factor (Kinesis)

Use enhanced

fan-out (Kinesis)

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Next steps

https://aal80.github.io/reinvent2024-svs217

https://aal80.github.io/reinvent2024-svs217/

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Check out these other sessions
SVS321 AWS Lambda and Apache Kafka for real-time data processing (Breakout)
Watch on YouTube in a few weeks

SVS406 Scale streaming workloads with AWS Lambda (Chalk talk)
Thu Dec 05 16:00 - MGM Grand Premier 309

SVS216 Serverless data processing with AWS Lambda and Apache Kafka (Builder)
Wed Dec 04 08:30 - Mandalay Bay Surf B

SVS407 Understanding AWS Lambda event source mapping (Chalk talk)
Wed Dec 04 12:00 - MGM Grand Premier 320

SVS309 Building EDAs with Apache Kafka and Amazon EventBridge (Chalk talk)
Wed Dec 04 08:30 - Caesars Forum Academy 416

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Continue your AWS Serverless learning

Learn at your

own pace

Increase your

knowledge

Earn AWS

Serverless badge

Expand your serverless

skills with our learning plans

on AWS Skill Builder

Use our AWS Ramp-Up Guides

to build your serverless

knowledge

Demonstrate your

knowledge by achieving

digital badges

https://s12d.com/serverless-learning

https://s12d.com/serverless-learning

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Thank you!

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Please complete the session
survey in the mobile app

Anton Aleksandrov

antonal80

	Intro
	Slide 1
	Slide 2: Improve throughput and monitoring of serverless streaming workloads
	Slide 3: Let’s talk about
	Slide 4: Let’s talk about cars
	Slide 5: Let’s talk about cars
	Slide 6: Let’s talk about
	Slide 7: Let’s talk about
	Slide 8: Let’s talk about streaming data processing
	Slide 9: Let’s talk about streaming data processing
	Slide 10: Streaming workloads use cases
	Slide 11: Streaming workloads characteristics
	Slide 12: Consistent workloads
	Slide 13: What is a spiky workload?
	Slide 14: What is a spiky workload?
	Slide 15: Serverless streaming on AWS
	Slide 16: Let’s talk about

	Lambda scaling
	Slide 17: Let’s dive deeper
	Slide 18: Understanding Lambda concurrency
	Slide 19: Understanding Lambda function concurrency
	Slide 20: Understanding Lambda function concurrency
	Slide 21: Understanding Lambda function concurrency
	Slide 22: Understanding Lambda function concurrency
	Slide 23: Understanding Lambda function concurrency
	Slide 24: Understanding Lambda function concurrency
	Slide 25: Understanding Lambda function concurrency
	Slide 26: Understanding Lambda function concurrency
	Slide 27: Understanding Lambda function concurrency
	Slide 28: Understanding Lambda function concurrency
	Slide 29: Understanding Lambda function concurrency
	Slide 30: Concurrency scaling rate – per function
	Slide 31: Concurrency scaling rate – per function
	Slide 32: Lambda monitoring
	Slide 33: Event sources
	Slide 34: Event source mappings
	Slide 35: Event source mappings

	Common techniques
	Slide 36
	Slide 37: Improving throughput
	Slide 38: Improving throughput - concurrency
	Slide 39: Improving throughput - duration
	Slide 40: Improving throughput - filtering
	Slide 41: Improving throughput - batching
	Slide 42: Improving throughput
	Slide 43: Event source mapping - polling
	Slide 44: Event source mapping - filtering
	Slide 45: Event source mapping - filtering
	Slide 46: Event source mapping - filtering
	Slide 47: Event source mapping - filtering
	Slide 48: Event source mapping - filtering
	Slide 49: Event source mapping - batching
	Slide 50: Event source mapping - invoker
	Slide 51: Event source mapping - IaC

	ESM-specific techniques
	Slide 52
	Slide 53: Streaming event source types
	Slide 54: Streaming event source types
	Slide 55: Streaming event source types
	Slide 56: Terminology
	Slide 57: Kafka partitions/Kinesis shards
	Slide 58: Kafka partitions/Kinesis shards

	Kinesis
	Slide 59
	Slide 60: Consuming Kinesis Data Stream
	Slide 61: Consuming Kinesis – shared-throughput (standard)
	Slide 62: Consuming Kinesis – enhanced fan-out (EFO)
	Slide 63: Consuming Kinesis with Lambda ESM
	Slide 64: Consuming Kinesis with Lambda ESM
	Slide 65: Consuming Kinesis with Lambda ESM
	Slide 66: Consuming Kinesis with Lambda ESM
	Slide 67: Kinesis monitoring
	Slide 68: Iterator age is growing rapidly?

	Kafka
	Slide 69
	Slide 70: Consuming Kafka with Lambda - scaling
	Slide 71: Consuming Kafka with Lambda - scaling
	Slide 72: Consuming Kafka with Lambda - scaling
	Slide 73: Kafka monitoring
	Slide 74

	Provisioned Pollers for ESM
	Slide 75: Announcing Provisioned Mode for Kafka ESM
	Slide 76: Announcing Provisioned Mode for Kafka ESM
	Slide 77: Let’s see the performance difference
	Slide 78: Let’s see the performance difference
	Slide 79: On-demand vs. provisioned ESM performance
	Slide 80: On-demand vs. provisioned ESM performance
	Slide 81: On-demand vs. provisioned ESM performance
	Slide 82: On-demand vs. provisioned ESM performance
	Slide 83: On-demand vs. provisioned ESM performance
	Slide 84: On-demand vs. provisioned ESM performance
	Slide 85: On-demand vs. provisioned ESM performance
	Slide 86: Remember the spiky workload?
	Slide 87: Remember the spiky workload?

	New metrics
	Slide 88: Observability
	Slide 89: Event source mappings observability
	Slide 90: Announcing Enhanced ESM Observability
	Slide 91: Announcing Enhanced ESM Observability
	Slide 92: Announcing Enhanced ESM Observability
	Slide 93: Announcing Enhanced ESM Observability
	Slide 94: Announcing Enhanced ESM Observability
	Slide 95: Announcing Enhanced ESM Observability

	Wrapup
	Slide 96: Wrapping up
	Slide 97: Improving throughput
	Slide 98: Improving throughput
	Slide 99: Next steps
	Slide 100: Check out these other sessions
	Slide 101: Continue your AWS Serverless learning
	Slide 102

