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Systems development life cycle

Plan/design Build Ship Operate
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Findings come in late

Plan/design Build Ship Operate

Readiness assessment
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Findings come in late

Plan/design Build Ship Operate

Readiness assessment
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Let’s fix this

Plan/design Build Ship Operate

Today, let’s fix here
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Powertools for AWS Lambda

Logger

Metrics

Tracer

+ Many more

A toolkit to implement 

serverless best practices and 

increase developer velocity
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Powertools for AWS Lambda: Toolkit

Batch processing

REST/GraphQL API

Input/output validation

Config management

Secrets handling

Idempotency

Observability

BYO middleware

Self-documented schemas
Feature flags

Data extractionCaching Streaming

*feature set may vary across languages

Python | TypeScript | Java | .NET

Best practices for everyone
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Powertools for AWS Lambda

200B+
requests/week

40%
Community developed
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Structured logging
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Structured logging: Recap

Raw Semi-structured Canonical Structured



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Structured logging: Without Powertools

Raw

[INFO] 2024-12-02T22:.. 1c8df7d3… Hello world
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Structured logging: Without Powertools

[INFO] 2024-12-02T22:.. … {“message”: “Hello world”}

Semi-

structured
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Structured logging: Without Powertools

Canonical

at=INFO msg=Aha! request_latency=0.1
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Structured logging: Without Powertools

Structured
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Structured logging: Without Powertools

Structured
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Structured logging: Powertools

Structured
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Structured logging: Powertools

Structured
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Structured logging: Powertools

Structured
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Structured logging: Powertools

Structured
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Structured logging: Powertools

BYO formatter
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Structured logging: Powertools
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Structured logging: Powertools

Wide logs



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Structured logging: Powertools

Wide logs
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Event handler
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A common pattern

Amazon API Gateway AWS Lambda

Routing Input/output validation

Config management

Idempotency

Observability

BYO middleware

OpenAPI
Serialization

Swagger UI
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API design & trade-offs

How many Lambda functions do you need for an API?
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API design & trade-offs

Lambda 
monolith

Micro-functions?
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Lambda monolith

• Simplicity

• Lower cold start chance

• Higher cold start time

• Scaling & quotas

• Broad permissions

• Simpler CI/CD

Amazon API Gateway AWS Lambda

/orders
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Micro-functions

• Complexity

• Higher cold start chance

• Lower cold start time

• Independent scaling

• Granular permissions

• Multiple deployments

Amazon API Gateway

/orders
GetOrderFunction

ChangeOrderFunction

CancelOrderFunction
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Event handler

Understand input structure

Create routing

Extract and transform input

Create response structure

Extract path and query parameters

Handle exceptions
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Routing
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Exception handling
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Validation
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OpenAPI spec
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And more…

Middlewares

Swagger UI

OpenAPI spec

CORS

Binary repsonse

Compression

Fine-grained responses

Custom serializer
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Event handler

/orders

GET
POST
PUT
DELETEAmazon API Gateway

AWS Lambda

AWS AppSync

Elastic Load Balancing

Amazon VPC Lattice

Amazon Bedrock

AWS Lambda
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Event handler



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Idempotency
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What is idempotency?

idem      same

potent   having power

idempotent (ī-dem ́pə-tən-sē) 

adjective

Same effect regardless of retries

Safely retry without side effects

Stable outcomes

Consistency

Resilience
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Why do I need idempotency?

”The world is asynchronous.”

Dr. Werner Vogels

VP and CTO at Amazon.com

Lambda retries

At-least-once delivery

Transient failures

SDK retries

Eventual consistency

Auto-scaling operations
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Idempotency

AWS Lambda

/ordersJSON

Amazon DynamoDB
Servers

1

2

3

1

2

3
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Idempotency

AWS Lambda

/ordersJSON

Servers

1

2

3

1

2

3

$$$$
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Idempotency

AWS Lambda

JSON

Amazon DynamoDB
Servers

1

2

3

1

I have seen it before!

Here is a previous repsonse

Timeout Concurrency Consistency Expiration

Validation Idempotency key Serialization
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Scenario 1: First invocation

Caller Your Lambda Storage

Event Get or set

key=id(event), status=INPROGRESS

Your code

set result={…}

key=id(event), status=COMPLETE

Result
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Scenario 2: Second invocation

Caller Your Lambda Storage

Event Get or set

key=id(event)

result={…}

status=COMPLETE

Result
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Scenario 3: Concurrent invocations

Caller Your Lambda Storage

Event Get or set

key=id(event)

result={…}

status=INPROGRESS
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Scenario 4: Handling exceptions

Caller Your Lambda Storage

Event Get or set

key=id(event), status=INPROGRESS

Your code

CRASHES

delete key=id(event)
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Idempotency storage

Storage with 
atomic semantics

Event Your code Output

DataRecord

idempotency_key

status

response_data
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Idempotency
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Context awareness
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Fine-tune settings
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Swap persistence layer
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Batch processing
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Batch processing

Amazon Simple Queue 

Service (Amazon SQS)

Amazon Kinesis

Amazon DynamoDB

AWS Lambda

Input batch Result batch
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Batch processing
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Batch processing
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Batch processing
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Roadmap



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Roadmap

Powertools for 

AWS Lambda 

(Python) 

Powertools for 

AWS Lambda 

(TypeScript)

Powertools for 

AWS Lambda 

(.NET)
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Thank you!
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Please complete the session 
survey in the mobile app

Andrea Amorosi

@dreamorosi
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