
© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Gain expert-level knowledge
about Powertools for AWS
Lambda

Andrea Amorosi

O P N 4 0 2

(he/him)

Senior SA Engineer, Powertools

Amazon Web Services

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

01 Powertools for AWS Lambda 05 Batch processing

02 Structured logging 06 Roadmap and wrap up

03 Event handler

04 Idempotency

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Systems development life cycle

Plan/design Build Ship Operate

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Findings come in late

Plan/design Build Ship Operate

Readiness assessment

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Findings come in late

Plan/design Build Ship Operate

Readiness assessment

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Let’s fix this

Plan/design Build Ship Operate

Today, let’s fix here

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Powertools for AWS Lambda

Logger

Metrics

Tracer

+ Many more

A toolkit to implement

serverless best practices and

increase developer velocity

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Powertools for AWS Lambda: Toolkit

Batch processing

REST/GraphQL API

Input/output validation

Config management

Secrets handling

Idempotency

Observability

BYO middleware

Self-documented schemas
Feature flags

Data extractionCaching Streaming

*feature set may vary across languages

Python | TypeScript | Java | .NET

Best practices for everyone

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Powertools for AWS Lambda

200B+
requests/week

40%
Community developed

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Structured logging

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Structured logging: Recap

Raw Semi-structured Canonical Structured

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Structured logging: Without Powertools

Raw

[INFO] 2024-12-02T22:.. 1c8df7d3… Hello world

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Structured logging: Without Powertools

[INFO] 2024-12-02T22:.. … {“message”: “Hello world”}

Semi-

structured

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Structured logging: Without Powertools

Canonical

at=INFO msg=Aha! request_latency=0.1

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Structured logging: Without Powertools

Structured

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Structured logging: Without Powertools

Structured

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Structured logging: Powertools

Structured

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Structured logging: Powertools

Structured

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Structured logging: Powertools

Structured

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Structured logging: Powertools

Structured

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Structured logging: Powertools

BYO formatter

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Structured logging: Powertools

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Structured logging: Powertools

Wide logs

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Structured logging: Powertools

Wide logs

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Event handler

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

A common pattern

Amazon API Gateway AWS Lambda

Routing Input/output validation

Config management

Idempotency

Observability

BYO middleware

OpenAPI
Serialization

Swagger UI

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

API design & trade-offs

How many Lambda functions do you need for an API?

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

API design & trade-offs

Lambda
monolith

Micro-functions?

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Lambda monolith

• Simplicity

• Lower cold start chance

• Higher cold start time

• Scaling & quotas

• Broad permissions

• Simpler CI/CD

Amazon API Gateway AWS Lambda

/orders

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Micro-functions

• Complexity

• Higher cold start chance

• Lower cold start time

• Independent scaling

• Granular permissions

• Multiple deployments

Amazon API Gateway

/orders
GetOrderFunction

ChangeOrderFunction

CancelOrderFunction

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Event handler

Understand input structure

Create routing

Extract and transform input

Create response structure

Extract path and query parameters

Handle exceptions

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Routing

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Exception handling

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Validation

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

OpenAPI spec

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

And more…

Middlewares

Swagger UI

OpenAPI spec

CORS

Binary repsonse

Compression

Fine-grained responses

Custom serializer

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Event handler

/orders

GET
POST
PUT
DELETEAmazon API Gateway

AWS Lambda

AWS AppSync

Elastic Load Balancing

Amazon VPC Lattice

Amazon Bedrock

AWS Lambda

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Event handler

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Idempotency

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What is idempotency?

idem same

potent having power

idempotent (ī-dem ́pə-tən-sē)

adjective

Same effect regardless of retries

Safely retry without side effects

Stable outcomes

Consistency

Resilience

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Why do I need idempotency?

”The world is asynchronous.”

Dr. Werner Vogels

VP and CTO at Amazon.com

Lambda retries

At-least-once delivery

Transient failures

SDK retries

Eventual consistency

Auto-scaling operations

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Idempotency

AWS Lambda

/ordersJSON

Amazon DynamoDB
Servers

1

2

3

1

2

3

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Idempotency

AWS Lambda

/ordersJSON

Servers

1

2

3

1

2

3

$$$$

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Idempotency

AWS Lambda

JSON

Amazon DynamoDB
Servers

1

2

3

1

I have seen it before!

Here is a previous repsonse

Timeout Concurrency Consistency Expiration

Validation Idempotency key Serialization

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Scenario 1: First invocation

Caller Your Lambda Storage

Event Get or set

key=id(event), status=INPROGRESS

Your code

set result={…}

key=id(event), status=COMPLETE

Result

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Scenario 2: Second invocation

Caller Your Lambda Storage

Event Get or set

key=id(event)

result={…}

status=COMPLETE

Result

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Scenario 3: Concurrent invocations

Caller Your Lambda Storage

Event Get or set

key=id(event)

result={…}

status=INPROGRESS

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Scenario 4: Handling exceptions

Caller Your Lambda Storage

Event Get or set

key=id(event), status=INPROGRESS

Your code

CRASHES

delete key=id(event)

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Idempotency storage

Storage with
atomic semantics

Event Your code Output

DataRecord

idempotency_key

status

response_data

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Idempotency

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Context awareness

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Fine-tune settings

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Swap persistence layer

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Batch processing

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Batch processing

Amazon Simple Queue

Service (Amazon SQS)

Amazon Kinesis

Amazon DynamoDB

AWS Lambda

Input batch Result batch

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Batch processing

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Batch processing

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Batch processing

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Roadmap

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Roadmap

Powertools for

AWS Lambda

(Python)

Powertools for

AWS Lambda

(TypeScript)

Powertools for

AWS Lambda

(.NET)

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Thank you!

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Please complete the session
survey in the mobile app

Andrea Amorosi

@dreamorosi

	Slide 1
	Slide 2: Gain expert-level knowledge about Powertools for AWS Lambda
	Slide 3
	Slide 4: Systems development life cycle
	Slide 5: Findings come in late
	Slide 6: Findings come in late
	Slide 7: Let’s fix this
	Slide 8: Powertools for AWS Lambda
	Slide 9: Powertools for AWS Lambda: Toolkit
	Slide 10: Powertools for AWS Lambda
	Slide 11: Structured logging
	Slide 12: Structured logging: Recap
	Slide 13: Structured logging: Without Powertools
	Slide 14: Structured logging: Without Powertools
	Slide 15: Structured logging: Without Powertools
	Slide 16: Structured logging: Without Powertools
	Slide 17: Structured logging: Without Powertools
	Slide 18: Structured logging: Powertools
	Slide 19: Structured logging: Powertools
	Slide 20: Structured logging: Powertools
	Slide 21: Structured logging: Powertools
	Slide 22: Structured logging: Powertools
	Slide 23: Structured logging: Powertools
	Slide 24: Structured logging: Powertools
	Slide 25: Structured logging: Powertools
	Slide 26: Event handler
	Slide 27: A common pattern
	Slide 28: API design & trade-offs
	Slide 29: API design & trade-offs
	Slide 30: Lambda monolith
	Slide 31: Micro-functions
	Slide 32: Event handler
	Slide 33: Routing
	Slide 34: Exception handling
	Slide 35: Validation
	Slide 36: OpenAPI spec
	Slide 37: And more…
	Slide 38: Event handler
	Slide 39: Event handler
	Slide 40: Idempotency
	Slide 41: What is idempotency?
	Slide 42: Why do I need idempotency?
	Slide 43: Idempotency
	Slide 44: Idempotency
	Slide 45: Idempotency
	Slide 46: Scenario 1: First invocation
	Slide 47: Scenario 2: Second invocation
	Slide 48: Scenario 3: Concurrent invocations
	Slide 49: Scenario 4: Handling exceptions
	Slide 50: Idempotency storage
	Slide 51: Idempotency
	Slide 52: Context awareness
	Slide 53: Fine-tune settings
	Slide 54: Swap persistence layer
	Slide 55: Batch processing
	Slide 56: Batch processing
	Slide 57: Batch processing
	Slide 58: Batch processing
	Slide 59: Batch processing
	Slide 60: Roadmap
	Slide 61: Roadmap
	Slide 62

