
© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Efficient incremental 
processing with Apache 
Iceberg at Netflix
Jun He

NFX303

(he/him)
Staff Software Engineer
Netflix

Vaidy Krishnan
Strategic Account Manager
AWS



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Data



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Big data



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Data accuracy



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Data freshness



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Cost efficiency



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Apache Iceberg



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Netflix



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Netflix Maestro



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

About us

(he/him)
Staff Software Engineer
Netflix

Jun He
Strategic Account Manager 
AWS

Vaidy Krishnan



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

01 Introduction

02 Architectural design

03 Use cases and examples

04 Takeaways and future improvements

Outline



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Introduction



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Landscape of data insights at Netflix

Introduction



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Data for business needs

Streaming Games Ads Live



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Common problems

Data accuracy Data freshness Cost efficiency

Exabyte data warehouse Business needs for 
new initiatives

More than $150M 
per year



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Late arriving data 

Event time

Processing time

Table partition 
based on event 
time

10:20 PM 8:20 AM

hour=10 hour=8

Late arriving event



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Big Data Analytics Platform

BDAP tech stack

and other BDAP 
internal services

Amazon S3 Amazon EC2



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Existing solutions

Lookback window

● Data accuracy

Ignore late arriving data

● Data freshness 
● Cost efficiency

Wait then process

● Data accuracy 
● Cost efficiency



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Incremental processing is an approach to processing 
data in batches — but only new or changed data 

● Capturing incremental data changes 

● Tracking their states (i.e., whether a change is 
processed by a workflow or not)

Incremental processing



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Key enablers

Incremental processing support (IPS)



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Iceberg is a high-performance format for huge analytic tables

● Open table format
● Open community standard
● Decentralized metadata
● Storage separation
● Schema and partition evolution
● Ease of data management

Apache Iceberg

Rich information from the metadata layer



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Iceberg concepts

● Catalog
● Table
● Snapshot
● Data file
● Partition



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Iceberg concepts

● Catalog
● Table
● Snapshot
● Data file
● Partition



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Iceberg concepts

● Catalog
● Table
● Snapshot
● Data file
● Partition



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

● Horizontally scalable workflow orchestrator
● Oversee the entire lifecycle of a workflow
● Serverless execution from user perspective
● Support both acyclic and cyclic workflows
● Multiple out-of-the-box reusable patterns
● Designed for expansion and integrations 

with others

What is Maestro



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Netflix data/ML workflow orchestrator

Maestro

● Open to the public in 

July 2024

● Started in March 2020

● Alpha in September 2021

● Beta in April 2022

● GA in November 2022

● Migrated all traffic in 

October 2023

● New features in progress



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

YAML definition

Workflow Example

Description: |

This is a sample description to [a Maestro 

workflow](https://github.com/Netflix/maestro)

Trigger:

cron: '@daily'

Workflow:

id: demo.pipeline

my_query: INSERT OVERWRITE TABLE 

${TARGET_TABLE} SELECT USER_ID, DATE_INT, 

SUM(watch_time) FROM ${SOURCE_TABLE} WHERE 

is_active=true AND DATE_INT > DATE_MINUS_7 

group by USER_ID, DATE_INT;

jobs:

- job:

id: job.1

type: Spark

spark:

script: ${my_query}

$ scheduler push workflow.yaml

$ scheduler run demo.pipeline my_query="SELECT 

1"

Workflow run has been successfully submitted.

View on data.netflix: 

https://data.netflix.net/maestro/sandbox/demo.p

ipeline/instances/1



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

YAML definition

Workflow Example

Description: |

This is a sample description to [a Maestro 

workflow](https://github.com/Netflix/maestro)

Trigger:

cron: '@daily'

Workflow:

id: demo.pipeline

my_query: INSERT OVERWRITE TABLE 

${TARGET_TABLE} SELECT USER_ID, DATE_INT, 

SUM(watch_time) FROM ${SOURCE_TABLE} WHERE 

is_active=true AND DATE_INT > DATE_MINUS_7 

group by USER_ID, DATE_INT;

jobs:

- job:

id: job.1

type: Spark

spark:

script: ${my_query}

$ scheduler push workflow.yaml

$ scheduler run demo.pipeline my_query="SELECT 

1"

Workflow run has been successfully submitted.

View on data.netflix: 

https://data.netflix.net/maestro/sandbox/demo.p

ipeline/instances/1



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

YAML definition

Workflow Example

Description: |

This is a sample description to [a Maestro 

workflow](https://github.com/Netflix/maestro)

Trigger:

cron: '@daily'

Workflow:

id: demo.pipeline

my_query: INSERT OVERWRITE TABLE 

${TARGET_TABLE} SELECT USER_ID, DATE_INT, 

SUM(watch_time) FROM ${SOURCE_TABLE} WHERE 

is_active=true AND DATE_INT > DATE_MINUS_7 

group by USER_ID, DATE_INT;

jobs:

- job:

id: job.1

type: Spark

spark:

script: ${my_query}

$ scheduler push workflow.yaml

$ scheduler run demo.pipeline my_query="SELECT 

1"

Workflow run has been successfully submitted.

View on data.netflix: 

https://data.netflix.net/maestro/sandbox/demo.p

ipeline/instances/1



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

YAML definition

Workflow Example

Description: |

This is a sample description to [a Maestro 

workflow](https://github.com/Netflix/maestro)

Trigger:

cron: '@daily'

Workflow:

id: demo.pipeline

my_query: INSERT OVERWRITE TABLE 

${TARGET_TABLE} SELECT USER_ID, DATE_INT, 

SUM(watch_time) FROM ${SOURCE_TABLE} WHERE 

is_active=true AND DATE_INT > DATE_MINUS_7 

group by USER_ID, DATE_INT;

jobs:

- job:

id: job.1

type: Spark

spark:

script: ${my_query}

$ scheduler push workflow.yaml

$ scheduler run demo.pipeline my_query="SELECT 

1"

Workflow run has been successfully submitted.

View on data.netflix: 

https://data.netflix.net/maestro/sandbox/demo.p

ipeline/instances/1



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

YAML definition

Workflow Example

Description: |

This is a sample description to [a Maestro 

workflow](https://github.com/Netflix/maestro)

Trigger:

cron: '@daily'

Workflow:

id: demo.pipeline

my_query: INSERT OVERWRITE TABLE 

${TARGET_TABLE} SELECT USER_ID, DATE_INT, 

SUM(watch_time) FROM ${SOURCE_TABLE} WHERE 

is_active=true AND DATE_INT > DATE_MINUS_7 

group by USER_ID, DATE_INT;

jobs:

- job:

id: job.1

type: Spark

spark:

script: ${my_query}

$ scheduler push workflow.yaml

$ scheduler run demo.pipeline my_query="SELECT 

1"

Workflow run has been successfully submitted.

View on data.netflix: 

https://data.netflix.net/maestro/sandbox/demo.p

ipeline/instances/1



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

YAML definition

Workflow Example

Description: |

This is a sample description to [a Maestro 

workflow](https://github.com/Netflix/maestro)

Trigger:

cron: '@daily'

Workflow:

id: demo.pipeline

my_query: INSERT OVERWRITE TABLE 

${TARGET_TABLE} SELECT USER_ID, DATE_INT, 

SUM(watch_time) FROM ${SOURCE_TABLE} WHERE 

is_active=true AND DATE_INT > DATE_MINUS_7 

group by USER_ID, DATE_INT;

jobs:

- job:

id: job.1

type: Spark

spark:

script: ${my_query}

$ scheduler push workflow.yaml

$ scheduler run demo.pipeline my_query="SELECT 

1"

Workflow run has been successfully submitted.

View on data.netflix: 

https://data.netflix.net/maestro/sandbox/demo.p

ipeline/instances/1



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Workflow orchestrator for everyone

Extensible

Job templates
Bring your own 
compute
Async execution

Dynamic

Parameterized 
workflows
SEL
Input/output 
Parameters

Integrations

Shell scripts
Notebooks
Java
Docker
SQL

Interfaces

YAML
Python
JAVA
REST
GraphQL
Maestro UI



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Provide a clean and easy-to-
adopt solution for the efficient 
incremental processing

● Data freshness

● Data accuracy

● Cost efficiency

IPS Product briefs



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Architectural design



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Efficient incremental change capturing

● DO NOT read any real data from the table(s)
● Use Apache Iceberg metadata layer

Best user experiences

● Decoupling change capturing from business logics
● Clean interfaces over Maestro
● Language and engine agnostic

Design of incremental processing support (IPS)



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Apache Iceberg metadata provides all the needed information related to 
the new/updated data files

● Upper and lower bounds of a given column (partitioned or 
unpartitioned)

● Data file size, location

Build a zero-data-copy table including only change data

● No need for real data access 
● No security concerns

Design of incremental change capturing



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Incremental change capturing

Iceberg table snapshot 

Immutable data files

Hidden partitions



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Incremental change capturing

New “append” snapshot 

Added immutable data files

Mutated partitions



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Incremental change capturing

Empty table with the same 
schema

Add data file references to 
the change table

● Zero data copy
● No data access
● Same partition layout



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Alternatives

• Apache Iceberg + Flink

• Apache Iceberg + Spark Procedure (create_changelog_view)

• Apache Iceberg + Spark Structure Streaming



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Show me the code

Table source = catalog.loadTable(sourceTableIdentifier);

List<Snapshot> snapshots = StreamSupport.stream(

SnapshotUtil.ancestorsBetween(source, toSnapshotIdInclusive, fromSnapshotIdExclusive).spliterator(), false)

.filter(snapshot -> snapshot.operation().equals(DataOperations.APPEND))

.collect(Collectors.toList());

Table icdcTable = createChangeTable(catalog, source, icdcTableName)); 

AppendFiles af = icdcTable.newAppend();

for (Snapshot snapshot : snapshots) {

for (DataFile df : snapshot.addedDataFiles(source.io())) {

af.appendFile(df);

}

}

af.commit();

Get a list of append 
snapshots

Add data files to 
the ICDC table



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Emerging patterns

• Incrementally process the captured incremental change data and 
directly append it to the target table

• Use captured incremental change data as the row level filter list to 
remove unnecessary transformation

• Use the captured range parameters in the business logic



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Pattern 1: Incrementally append captured 
change data



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Pattern 1: Incrementally append captured 
change data



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Pattern 2: Use captured change data as row 
level filters



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Pattern 3: Use the captured range parameters



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Compatibility with existing workflows

Extra costs

● Development cost
● Operational cost
● Maintenance cost

Onboarding concerns



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Interfaces

● Table(s)
○ Table name(s) passed to user business 

logic over Maestro parameters
● IpCapture step type

○ Capture changes from last checkpoint
● IpCommit step type

○ Commit checkpoint for this run

Maestro incremental processing solution (IPS)



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Users love to have freedom to use their own approaches to 
solve their problems

● Fully compatible with existing workflows
● Don’t ask to use specific languages
● Don’t ask to choose a specific compute engine
● Don’t ask to rewrite the business logic
● Don’t ask to re-architecture the existing data pipelines
● Low code solution

Best user experiences



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Auto remediation workflow



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Auto remediation workflow



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Auto remediation workflow



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Workflow definition

Auto remediation workflow

Workflow:

id: auto.remediation.pipeline

jobs:

- subworkflow:

id: normal_workflow

workflow_id: demo.pipeline

failure_mode: IGNORE_FAILURE

- job:

id: check_status

type: NoOp

- subworkflow:

id: recovery

workflow_id: example.recovery.wf

- subworkflow:

id: re_run

workflow_id: demo.pipeline

- job:

id: end

type: NoOp

dag:

- normal_workflow -> check_status

- check_status:

IF params.getFromStep('normal_workflow', 

'MAESTRO_STEP_STATUS') == 

'COMPLETED_WITH_ERROR': recovery -> re_run -> 

end

OTHERWISE: end



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Workflow definition

Auto remediation workflow

Workflow:

id: auto.remediation.pipeline

jobs:

- subworkflow:

id: normal_workflow

workflow_id: demo.pipeline

failure_mode: IGNORE_FAILURE

- job:

id: check_status

type: NoOp

- subworkflow:

id: recovery

workflow_id: example.recovery.wf

- subworkflow:

id: re_run

workflow_id: demo.pipeline

- job:

id: end

type: NoOp

dag:

- normal_workflow -> check_status

- check_status:

IF params.getFromStep('normal_workflow', 

'MAESTRO_STEP_STATUS') == 

'COMPLETED_WITH_ERROR': recovery -> re_run -> 

end

OTHERWISE: end



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Auto remediation workflow with IPS



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Auto remediation workflow with IPS



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Workflow definition

Auto remediation workflow with IPS

Description: |

This is a sample description to [a Maestro 

workflow](https://github.com/Netflix/maestro)

Trigger:

cron: '@daily'

Workflow:

id: incremental.processing.pipeline

jobs:

- job:

id: capture_change

type: IpCapture

ip_capture:

source_tables: 

- membership_table

capture_mode: ICDC

data_operations: 

- append

- subworkflow:

id: auto.remediation.pipeline

workflow_id: auto.remediation.pipeline

SOURCE_TABLE: icdc.membership_table.01

my_query: $S3{my_script.sql}

- job:

id: commit_checkpoint

type: IpCommit

ip_commit: 

capture_step: capture_change

dag: sequential



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Workflow definition

Auto remediation workflow with IPS

Description: |

This is a sample description to [a Maestro 

workflow](https://github.com/Netflix/maestro)

Trigger:

cron: '@daily'

Workflow:

id: incremental.processing.pipeline

jobs:

- job:

id: capture_change

type: IpCapture

ip_capture:

source_tables: 

- membership_table

capture_mode: ICDC

data_operations: 

- append

- subworkflow:

id: auto.remediation.pipeline

workflow_id: auto.remediation.pipeline

SOURCE_TABLE: icdc.membership_table.01

my_query: $S3{my_script.sql}

- job:

id: commit_checkpoint

type: IpCommit

ip_commit: 

capture_step: capture_change

dag: sequential



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Workflow definition

Auto remediation workflow with IPS

Description: |

This is a sample description to [a Maestro 

workflow](https://github.com/Netflix/maestro)

Trigger:

cron: '@daily'

Workflow:

id: incremental.processing.pipeline

jobs:

- job:

id: capture_change

type: IpCapture

ip_capture:

source_tables: 

- membership_table

capture_mode: ICDC

data_operations: 

- append

- subworkflow:

id: auto.remediation.pipeline

workflow_id: auto.remediation.pipeline

SOURCE_TABLE: icdc.membership_table.01

my_query: $S3{my_script.sql}

- job:

id: commit_checkpoint

type: IpCommit

ip_commit: 

capture_step: capture_change

dag: sequential



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Efficient incremental change capturing

Handle late arriving data

Language and engine agnostic

Clean interface

Compatible with existing workflows

Low onboarding cost

IPS highlights



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Use cases and examples



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Two-stage pipeline example

Source table
(playback_table)

Stage 1
Daily ETL workflow
(playback_daily_wf)

Target table
(playback_daily_table)

Stage 2
Daily aggregation 

workflow
(playback_daily_agg_wf)

Target table
(playback_daily_

agg_table)

Data from the 
past 14 days

INSERT 
OVERWRITE

INSERT 
OVERWRITE



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Change data 
since the last 
checkpoint

Stage 1 workflow with IPS

Source table
(playback_table)

Stage 1
Daily ETL workflow
(playback_daily_wf)

Target table
(playback_daily_table)

IPS ICDC table
(playback_icdc_t

able)

MERGE INTO

Daily -> Hourly

...

Trigger:

cron: '@daily'

...

...

Trigger:

cron: '@hourly'

...



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Changes of write job on stage 1



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Changes of write job on stage 1



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Changes of write job on stage 1



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Two-stage pipeline example

Source table
(playback_table)

Stage 1
Daily ETL workflow
(playback_daily_wf)

Target table
(playback_daily_table)

Stage 2
Daily aggregation 

workflow
(playback_daily_agg_wf)

Target table
(playback_daily_

agg_table)

Data from the 
past 14 days

INSERT 
OVERWRITE

INSERT 
OVERWRITE



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Change data 
since the last 
checkpoint 
excluding last 
day

Stage 2 workflow with IPS

Source table
(playback_daily_

table)

Target table
(playback_daily_agg_ta

ble)

IPS ICDC table
(playback_daily_i

cdc_table)

MERGE INTO
Stage 2

Daily IPS aggregation 
workflow

(playback_daily_agg_wf)

JOIN with IPS 
ICDC table

Daily -> Hourly

...

Trigger:

cron: '@daily'

...

...

Trigger:

cron: '@hourly'

...



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Changes of write job on stage 2



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Changes of write job on stage 2



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Changes of write job on stage 2



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Multi-stage workflow with IPS

Only 10% of original cost!



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Multi-table use case

Raw data

Raw dat

Raw data

IPS pattern 1
workflow to 
append  new 

data for hour 3 
and hour 6

Normal ETL 
workflow

IPS pattern 1
workflow to 
append new 

data for hour 5 
and hour 6

Hourly 
table 1

Hourly 
table 2

Hourly 
table 3

IPS pattern 3
workflow 

with multi-
source-

tables, where 
the captured 

range is 
between hour 
3 and hour 6

Hourly 
target 
table

3 6

6

6

3 4 5 6

3 4 5 6

3 4 5 6

5



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Multi-table use case

Raw data

Raw dat

Raw data

IPS pattern 1
workflow to 
append  new 

data for hour 3 
and hour 6

Normal ETL 
workflow

IPS pattern 1
workflow to 
append new 

data for hour 5 
and hour 6

Hourly 
table 1

Hourly 
table 2

Hourly 
table 3

IPS pattern 3
workflow 

with multi-
source-

tables, where 
the captured 

range is 
between hour 
3 and hour 6

Hourly 
target 
table

3 6

6

6

3 4 5 6

3 4 5 6

3 4 5 6

5



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Takeaways and future 
improvements



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Efficient capturing: Iceberg metadata enables incremental 
processing without accessing data

Simplified adoption: Decoupling change capture reduces 
complexity

Improved experience: Clean interfaces improve usability

New patterns: IPS patterns apply to many scenarios

Key takeaways



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Move from Table to View to reduce maintenance

Support other types of snapshots with the new 
version of Iceberg table specs

Work with Iceberg community to share the approach 
in Iceberg cookbooks

Multi-stage data backfill support

Future improvements



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Acknowledgment

Netflix 
team

Jun He
Charles Smith

Drew Goya

Yingyi ZhangEly Spears

Anjali Norwood Zhuoran Dong

Brittany Truong

Kyoko Shimada

Andy Chu

Prashanth Ramdas Abhinaya Shetty

Bharath Mummadisetty

Eva Tse



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Thank you!

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Please complete the session 
survey in the mobile app

Jun He
Staff Software Engineer
Netflix

linkedin.com/in/jheua

Vaidy Krishnan
Strategic Account Manager 
AWS


	Slide 1
	Slide 2: Efficient incremental processing with Apache Iceberg at Netflix
	Slide 3: Data
	Slide 4: Big data
	Slide 5: Data accuracy
	Slide 6: Data freshness
	Slide 7: Cost efficiency
	Slide 8: Apache Iceberg
	Slide 9: Netflix
	Slide 10: Netflix Maestro
	Slide 11
	Slide 12: About us
	Slide 13: Outline
	Slide 14: Introduction
	Slide 15: Introduction
	Slide 16: Data for business needs
	Slide 17: Common problems
	Slide 18: Late arriving data 
	Slide 19: Big Data Analytics Platform
	Slide 20: Existing solutions
	Slide 21: Incremental processing
	Slide 22: Incremental processing support (IPS)
	Slide 23: Apache Iceberg
	Slide 24: Iceberg concepts
	Slide 25: Iceberg concepts
	Slide 26: Iceberg concepts
	Slide 27: Iceberg concepts
	Slide 28: What is Maestro
	Slide 29: Maestro
	Slide 30: Workflow Example
	Slide 31: Workflow Example
	Slide 32: Workflow Example
	Slide 33: Workflow Example
	Slide 34: Workflow Example
	Slide 35: Workflow Example
	Slide 36: Workflow Example
	Slide 37: Workflow orchestrator for everyone
	Slide 38: IPS Product briefs
	Slide 39: Architectural design
	Slide 40: Design of incremental processing support (IPS)
	Slide 41: Design of incremental change capturing
	Slide 42: Incremental change capturing
	Slide 43: Incremental change capturing
	Slide 44: Incremental change capturing
	Slide 45: Alternatives
	Slide 46: Show me the code
	Slide 47: Emerging patterns
	Slide 48: Pattern 1: Incrementally append captured change data
	Slide 49: Pattern 1: Incrementally append captured change data
	Slide 50: Pattern 2: Use captured change data as row level filters
	Slide 51: Pattern 3: Use the captured range parameters
	Slide 52: Onboarding concerns
	Slide 53: Maestro incremental processing solution (IPS)
	Slide 54: Best user experiences
	Slide 55: Auto remediation workflow
	Slide 56: Auto remediation workflow
	Slide 57: Auto remediation workflow
	Slide 58: Auto remediation workflow
	Slide 59: Auto remediation workflow
	Slide 60: Auto remediation workflow with IPS
	Slide 61: Auto remediation workflow with IPS
	Slide 62: Auto remediation workflow with IPS
	Slide 63: Auto remediation workflow with IPS
	Slide 64: Auto remediation workflow with IPS
	Slide 65: IPS highlights
	Slide 66: Use cases and examples
	Slide 67: Two-stage pipeline example
	Slide 68: Stage 1 workflow with IPS
	Slide 69: Changes of write job on stage 1
	Slide 70: Changes of write job on stage 1
	Slide 71: Changes of write job on stage 1
	Slide 72: Changes of write job on stage 1
	Slide 73: Two-stage pipeline example
	Slide 74: Stage 2 workflow with IPS
	Slide 75: Changes of write job on stage 2
	Slide 76: Changes of write job on stage 2
	Slide 77: Changes of write job on stage 2
	Slide 78: Changes of write job on stage 2
	Slide 79: Multi-stage workflow with IPS
	Slide 80: Multi-table use case
	Slide 81: Multi-table use case
	Slide 82: Takeaways and future improvements
	Slide 83: Key takeaways
	Slide 84: Future improvements
	Slide 85: Acknowledgment
	Slide 86



