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Big data
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Data accuracy
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Data freshness
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Cost efficiency
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Apache Iceberg
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Introduction
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Landscape of data insights at Netflix

Introduction
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Data for business needs

Streaming Games Ads Live
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Common problems

Data accuracy Data freshness Cost efficiency

Exabyte data warehouse Business needs for 
new initiatives

More than $150M 
per year
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Late arriving data 

Event time

Processing time

Table partition 
based on event 
time

10:20 PM 8:20 AM

hour=10 hour=8

Late arriving event



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Big Data Analytics Platform

BDAP tech stack

and other BDAP 
internal services

Amazon S3 Amazon EC2
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Existing solutions

Lookback window

● Data accuracy

Ignore late arriving data

● Data freshness 
● Cost efficiency

Wait then process

● Data accuracy 
● Cost efficiency
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Incremental processing is an approach to processing 
data in batches — but only new or changed data 

● Capturing incremental data changes 

● Tracking their states (i.e., whether a change is 
processed by a workflow or not)

Incremental processing
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Key enablers

Incremental processing support (IPS)
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Iceberg is a high-performance format for huge analytic tables

● Open table format
● Open community standard
● Decentralized metadata
● Storage separation
● Schema and partition evolution
● Ease of data management

Apache Iceberg

Rich information from the metadata layer
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Iceberg concepts

● Catalog
● Table
● Snapshot
● Data file
● Partition
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Iceberg concepts

● Catalog
● Table
● Snapshot
● Data file
● Partition
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● Horizontally scalable workflow orchestrator
● Oversee the entire lifecycle of a workflow
● Serverless execution from user perspective
● Support both acyclic and cyclic workflows
● Multiple out-of-the-box reusable patterns
● Designed for expansion and integrations 

with others

What is Maestro
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Netflix data/ML workflow orchestrator

Maestro

● Open to the public in 

July 2024

● Started in March 2020

● Alpha in September 2021

● Beta in April 2022

● GA in November 2022

● Migrated all traffic in 

October 2023

● New features in progress
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YAML definition

Workflow Example

Description: |

This is a sample description to [a Maestro 

workflow](https://github.com/Netflix/maestro)

Trigger:

cron: '@daily'

Workflow:

id: demo.pipeline

my_query: INSERT OVERWRITE TABLE 

${TARGET_TABLE} SELECT USER_ID, DATE_INT, 

SUM(watch_time) FROM ${SOURCE_TABLE} WHERE 

is_active=true AND DATE_INT > DATE_MINUS_7 

group by USER_ID, DATE_INT;

jobs:

- job:

id: job.1

type: Spark

spark:

script: ${my_query}

$ scheduler push workflow.yaml

$ scheduler run demo.pipeline my_query="SELECT 

1"

Workflow run has been successfully submitted.

View on data.netflix: 

https://data.netflix.net/maestro/sandbox/demo.p

ipeline/instances/1
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Workflow orchestrator for everyone

Extensible

Job templates
Bring your own 
compute
Async execution

Dynamic

Parameterized 
workflows
SEL
Input/output 
Parameters

Integrations

Shell scripts
Notebooks
Java
Docker
SQL

Interfaces

YAML
Python
JAVA
REST
GraphQL
Maestro UI
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Provide a clean and easy-to-
adopt solution for the efficient 
incremental processing

● Data freshness

● Data accuracy

● Cost efficiency

IPS Product briefs



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Architectural design
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Efficient incremental change capturing

● DO NOT read any real data from the table(s)
● Use Apache Iceberg metadata layer

Best user experiences

● Decoupling change capturing from business logics
● Clean interfaces over Maestro
● Language and engine agnostic

Design of incremental processing support (IPS)
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Apache Iceberg metadata provides all the needed information related to 
the new/updated data files

● Upper and lower bounds of a given column (partitioned or 
unpartitioned)

● Data file size, location

Build a zero-data-copy table including only change data

● No need for real data access 
● No security concerns

Design of incremental change capturing
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Incremental change capturing

Iceberg table snapshot 

Immutable data files

Hidden partitions
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Incremental change capturing

New “append” snapshot 

Added immutable data files

Mutated partitions
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Incremental change capturing

Empty table with the same 
schema

Add data file references to 
the change table

● Zero data copy
● No data access
● Same partition layout
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Alternatives

• Apache Iceberg + Flink

• Apache Iceberg + Spark Procedure (create_changelog_view)

• Apache Iceberg + Spark Structure Streaming
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Show me the code

Table source = catalog.loadTable(sourceTableIdentifier);

List<Snapshot> snapshots = StreamSupport.stream(

SnapshotUtil.ancestorsBetween(source, toSnapshotIdInclusive, fromSnapshotIdExclusive).spliterator(), false)

.filter(snapshot -> snapshot.operation().equals(DataOperations.APPEND))

.collect(Collectors.toList());

Table icdcTable = createChangeTable(catalog, source, icdcTableName)); 

AppendFiles af = icdcTable.newAppend();

for (Snapshot snapshot : snapshots) {

for (DataFile df : snapshot.addedDataFiles(source.io())) {

af.appendFile(df);

}

}

af.commit();

Get a list of append 
snapshots

Add data files to 
the ICDC table
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Emerging patterns

• Incrementally process the captured incremental change data and 
directly append it to the target table

• Use captured incremental change data as the row level filter list to 
remove unnecessary transformation

• Use the captured range parameters in the business logic
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Pattern 1: Incrementally append captured 
change data
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Pattern 1: Incrementally append captured 
change data
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Pattern 2: Use captured change data as row 
level filters
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Pattern 3: Use the captured range parameters
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Compatibility with existing workflows

Extra costs

● Development cost
● Operational cost
● Maintenance cost

Onboarding concerns
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Interfaces

● Table(s)
○ Table name(s) passed to user business 

logic over Maestro parameters
● IpCapture step type

○ Capture changes from last checkpoint
● IpCommit step type

○ Commit checkpoint for this run

Maestro incremental processing solution (IPS)
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Users love to have freedom to use their own approaches to 
solve their problems

● Fully compatible with existing workflows
● Don’t ask to use specific languages
● Don’t ask to choose a specific compute engine
● Don’t ask to rewrite the business logic
● Don’t ask to re-architecture the existing data pipelines
● Low code solution

Best user experiences
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Auto remediation workflow
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Auto remediation workflow
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Auto remediation workflow
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Workflow definition

Auto remediation workflow

Workflow:

id: auto.remediation.pipeline

jobs:

- subworkflow:

id: normal_workflow

workflow_id: demo.pipeline

failure_mode: IGNORE_FAILURE

- job:

id: check_status

type: NoOp

- subworkflow:

id: recovery

workflow_id: example.recovery.wf

- subworkflow:

id: re_run

workflow_id: demo.pipeline

- job:

id: end

type: NoOp

dag:

- normal_workflow -> check_status

- check_status:

IF params.getFromStep('normal_workflow', 

'MAESTRO_STEP_STATUS') == 

'COMPLETED_WITH_ERROR': recovery -> re_run -> 

end

OTHERWISE: end
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Auto remediation workflow with IPS
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Auto remediation workflow with IPS
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Workflow definition

Auto remediation workflow with IPS

Description: |

This is a sample description to [a Maestro 

workflow](https://github.com/Netflix/maestro)

Trigger:

cron: '@daily'

Workflow:

id: incremental.processing.pipeline

jobs:

- job:

id: capture_change

type: IpCapture

ip_capture:

source_tables: 

- membership_table

capture_mode: ICDC

data_operations: 

- append

- subworkflow:

id: auto.remediation.pipeline

workflow_id: auto.remediation.pipeline

SOURCE_TABLE: icdc.membership_table.01

my_query: $S3{my_script.sql}

- job:

id: commit_checkpoint

type: IpCommit

ip_commit: 

capture_step: capture_change

dag: sequential
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Efficient incremental change capturing

Handle late arriving data

Language and engine agnostic

Clean interface

Compatible with existing workflows

Low onboarding cost

IPS highlights
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Use cases and examples
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Two-stage pipeline example

Source table
(playback_table)

Stage 1
Daily ETL workflow
(playback_daily_wf)

Target table
(playback_daily_table)

Stage 2
Daily aggregation 

workflow
(playback_daily_agg_wf)

Target table
(playback_daily_

agg_table)

Data from the 
past 14 days

INSERT 
OVERWRITE

INSERT 
OVERWRITE
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Change data 
since the last 
checkpoint

Stage 1 workflow with IPS

Source table
(playback_table)

Stage 1
Daily ETL workflow
(playback_daily_wf)

Target table
(playback_daily_table)

IPS ICDC table
(playback_icdc_t

able)

MERGE INTO

Daily -> Hourly

...

Trigger:

cron: '@daily'

...

...

Trigger:

cron: '@hourly'

...
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Changes of write job on stage 1
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Changes of write job on stage 1
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Changes of write job on stage 1
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Two-stage pipeline example

Source table
(playback_table)

Stage 1
Daily ETL workflow
(playback_daily_wf)

Target table
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Stage 2
Daily aggregation 

workflow
(playback_daily_agg_wf)

Target table
(playback_daily_
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Change data 
since the last 
checkpoint 
excluding last 
day

Stage 2 workflow with IPS

Source table
(playback_daily_

table)

Target table
(playback_daily_agg_ta

ble)

IPS ICDC table
(playback_daily_i

cdc_table)

MERGE INTO
Stage 2

Daily IPS aggregation 
workflow

(playback_daily_agg_wf)

JOIN with IPS 
ICDC table

Daily -> Hourly

...

Trigger:

cron: '@daily'

...

...

Trigger:

cron: '@hourly'

...
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Changes of write job on stage 2
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Changes of write job on stage 2
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Changes of write job on stage 2
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Multi-stage workflow with IPS

Only 10% of original cost!



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Multi-table use case

Raw data

Raw dat

Raw data

IPS pattern 1
workflow to 
append  new 

data for hour 3 
and hour 6

Normal ETL 
workflow

IPS pattern 1
workflow to 
append new 

data for hour 5 
and hour 6

Hourly 
table 1

Hourly 
table 2

Hourly 
table 3

IPS pattern 3
workflow 

with multi-
source-

tables, where 
the captured 

range is 
between hour 
3 and hour 6

Hourly 
target 
table

3 6

6

6

3 4 5 6

3 4 5 6

3 4 5 6

5
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Takeaways and future 
improvements
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Efficient capturing: Iceberg metadata enables incremental 
processing without accessing data

Simplified adoption: Decoupling change capture reduces 
complexity

Improved experience: Clean interfaces improve usability

New patterns: IPS patterns apply to many scenarios

Key takeaways
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Move from Table to View to reduce maintenance

Support other types of snapshots with the new 
version of Iceberg table specs

Work with Iceberg community to share the approach 
in Iceberg cookbooks

Multi-stage data backfill support

Future improvements
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Thank you!
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Please complete the session 
survey in the mobile app
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Netflix
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