ANNTASS

e [Nvent

DECEMBER 2 - 6, 2024 | LAS VEGAS, NV

NFX301

How Netflix handles sudden
load spikes in the cloud

Rob Gulewich Ryan Schroeder Joseph Lynch® Manju Prasad
(he/him) (he/him) (he/him) (she/her)

Principal Software Engineer Staff Software Engineer Principal Sof 'are Engineer Sr. Solutions Architect
Netflix Netflix Netflix Amazon

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

Rob Gulewich Ryan Schroeder Joseph Lynch

Principal Software Engineer Staff Software Engineer Principal Software
Netflix Platform Netflix Reliability Netflix Data Platfg

aws © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

| Agenda

@1 Problem: Load spikes 05 Experiment: Test resilience
@2 Solution: Predict and plan 6 Conclusions and wrap up
@3 Solution: React quickly

@4 Solution: Stay available

01: Problem
Load spikes at Netflix

c. or its affiliates. All rights reserved.

I Netflix cloud topology

. . s Ao = : | ;
> 7 g
- us-east-2
e . . gﬂjeu-west-l
us-west-2 g
S us-east-1
A B :
oy

Gradual traffic increases are the norm

_________ oo
B us-east- 2
' I us-west- 2 ' : :
~;gl)<(| / A | Starts per
tfough V)J‘\V) | ‘ second (SPS)
24-hour Traffic
periodicity phase shifts

aws © 2024, Amazon Web S

. eb Services, Inc. or its affiliates. All rights reserved.
S

| Load spikes are common

Netflix Regional SPS Bl cu-west-1 |

~+
3]
—

Failovers due to:

« Regular practice

« Bad software deployment
« Regional impairment

....... I H H H 3 H H H 3 H H H
I I
| Octos |l o
17:
Ll I

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

Fast failover is a load spike

Netflix Regional SPS

; R
= e e
| ==
= —
On Evacuation On Restore
Up to 2x traffic to saviors (variable) Up to 700x traffic to evacuated
in 1T minute
Long tail traffic takes ~5 minutes Reintroduce traffic over 5-10

Intelligent steering to minimize spike minutes

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

I .
Sources of unexpected traffic surges

Load
Load
L’
>

Time Time
Long surges Short spikes
Title launches Retry storms
External events (soccer matches, other Device bugs
sites down)

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

Thousands of microservices - Complex
downstream call graph

Microservice-Specific Regional Demand

Because of service decomposition, we understood that using a proxy

demand metric like SPS wasn’t tenable and we needed to transition to
microservice-specific demand. Unfortunately, due to the diversity of
services, a mix of Java (Governator/Springboot with Ribbon/gRPC, etc.) and
Node (NodeQuark), there wasn't a single demand metric we could rely on to
cover all use cases. To address this, we built a system that allows us to

associate each microservice with metrics that represent their demand.

Blog post:

aws

S

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Regional
2x Spike

A A
>i3¢ >i3¢
v v

Thousands of microservices - Different headroom

Normal System Load with Buffer
N
4x

™

10%

2x =~
50%

40%)

\\%

m)
Syste Time
Resources

Every service operates with two key Buffers

> 4x Failure Buffer

> 2x Success Buffer

System Load Under Load Spike

4x 4\
10%

2x
50%

40%

Failure Buffer Consumed
< — Load Shed

<—— Success Buffer Consumed
— Load Handled

System

Resources

Success buffer Headroom before errors (bad)
Failure buffer Headroom before congestive collapse (very bad)

aws

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
\—’1

\4

Time

. : : .
Our business is evolving

Buffer Recovering After Load Spike Changing business needs:

ax « More frequent big title launches
* More global launches
4x

Goals:
2x . \ * Reduce time to recover
i} - + Use regional failover less as the
"""" primary remediation
— « Build resiliency assuming load
ey It spikes are the norm

Constant Ty

W

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

02: Capacity plan
Load is often predictable

c. or its affiliates. All rights reserved.

Scale on a schedule

- If we know when traffic is going to arrive, prescale services
beforehand to match the predicted load

- Autoscaling is designed for reactive scaling of individual services

Prescale Spike Downscale

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

I
Prescaling

 Use the failover system to scale up the entire streaming fleet
« Maps regional SPS to RPS per instance and calculates new min. sizes

Autoscaling Group:

e Blue: min

* Brown: desired

e Green: instances up

Increase mins to match Decrease mins to
expected spike normal levels

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

Shape on a schedule

« Some title launches are centered in a specific geography

« For large launches, we can proactively steer users to other regions to
balance global capacity usage

eu-west-1 |

eu-west-1
us-west-2

us-west-2
us-east-2

us-east-2

us-east-1
us-east-1

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

03: Scale out of trou
Predictions are often wro

aws © 2024, Al » r c. or its affiliates. All rights reserved.
~ 2) %

I Autoscaling during steady state

Traffic vs Capacity

(.J

1 1
PT g6:88 68:88 18:88 12:88 14:88 16:88 18:88 28:88 22:88 Octl4 B2:868 B4:868 B6:68 B3:88 18:88 12:88 14:88 16:88 18:868 28:88 22:88 Oct15S B2:88 a84:84

Axis @

[Total Traffic
Axis 1

[l Total Capacity

Frame: 2d, End: 2824-18-15T85:27-67:88[US/Pacific], Step: 3m
Fetch: 358ms (L: 8.5M, 4.8k, 2.B; D: SB7.BM, 3.9M, 1.9M)

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

I Autoscaling during steady state

PT

Axis @

P

Smooth
Increase

i
i
Sm

Decrease

1 1 1 1 1 1 1
g6:88 B8:88 18:88 12:88 14:88 16:88 13:88

[Total Traffic

Axis 1

[l Total Capacity

Frame: 2d, End: 2824-18-15T85:27-67:88[US/Pacific], Step: 3m
Fetch: 358ms (L: 8.5M, 4.8k, 2.B; D: SB7.BM, 3.9M, 1.9M)

aws

p—

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

1
26:84

1
22:88

1
Qotl4

Traffic vs Capacity

i
ooth .*'j.

1
82 : 88

1
84 : 88

1
86 : 88

1
ad: a8

1
18:88

1
12:88

1
14:88

1
16:88

1
18:84

1
26:84

1
22:88

1
Qct15

1

i

1
82 : 88

1
84 : g

Autoscaling during load spikes

Load Spike vs Autoscaling

128. 8k
1688. 8k
868k S
bE .8k S
48 .8k S
//
28.8k S : :
7 //
T T T
PT 16:28 16:22 16:28 16:38 16:32 134 16:36 16:38 16:48 16:42 16:44 16:46 16:48 16:58 16:52 16:54 16:56 16:58 17:688
Axis 8
[0 Requests Per Second
Max : 137 . 646k Min : 816.533
Avg : 59.312k Last : 59.924k
Tot : 2.372H Cnt : 44. 068
Axis 1
[l Autoscaling Group Desired Size
Max : 57.666 Min : 5.688
Avg : 24.375 Last : 57.888
Tot : 975.666 Cnt : 44. 068

Frame: 48m, End: 2824-18-83T17:81-87:88[US/Pacific], Step: 1m
Fetch: 18ms (L: 8.2k, 1.6k, 2.8: D: 498.5k, 64.7k, BA.8k)

aws © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
\-—-;’

Autoscaling during load spikes

Load Spike vs Autoscaling

128. 8k 4

188, 8k 4

Be. 8k

688k - 2

I\k DDC

48.8k 4 |V \F D
ncroaco
11C1 SC

288k

T T T T T
PT 16:28 16:22 16:24 16:26 16:28 16:38 16:32 16:34 16:36 16:38 16:48 16:42 16:44 16:46 16:48 16:58 16:52 16:54 16:56 16:58 17:88

Axis B
[0 Requests Per Second
Max : 137.646k Min : 816.533 . .
Avg i 8312k Lest: 59904k Time to detect: ~4 minutes ~20 minute TTR
Axis 1
[l Autoscaling Group Desired Size
Max : 57.888 Min : 5.8688 . .
Avg : 24.375 Last : 57.008 Time to boot: ~6 minutes
Tot : 975.8868 Cnt 48.6888

Frame: 48m, End: 2824-18-83T17:81-87:88[US/Pacific], Step: 1m
Fetch: 18ms (L: 8.2k, 1.6k, 2.8: D: 498.5k, 64.7k, BA.8k)

“ Time to detect: ~2 minutes
aws

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
\-—-;’

Components of time-to-recovery

/‘___.-'"_--__ —--—-""h-.\
Ve N
/ \
| \
I |
| |
| |
| \
/ \
_____ —-""/ \...H_.
| | | | | |
T | | I | |
TL TD TII 1;R
|
Time to Detect |

Time to Inject

Time to Recover
Traffic spikes at T causing Utilization to increase. The Cluster Size increases only after delays
for Detection and Control Plane . After a delay for OS Startup, we reach the point usable capacity

is injected T,. Utilization remains high until Application Startup and Load Balancing delays allow
new capacity to take traffic - then we Recover at T_..

aws

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
\—;’

Stage Description

Detection

Traffic

Scaling alarm triggers

Cluster Size

Control plane | Hardware online

Utilization

System startu Kernel and base systemd
/ P units started
Application

Microservice started
startup

Traffic Traffic arrives

l : :
Experimentation setup

 Synthetic load generation
« Baseline vs. experiment comparison
« Variations of scaling policy configurations

aWS’ © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

| . A
Time-to-recovery dominating factors

Breakdown of Startup Latency

detection S &

control-plane/ FW

system-start: PH]%
application-start; H o S
traffic| i 3
0 50 100 150 200 250 300

Duration (Seconds)

Detection > App Startup > System Startup > Hardware Startup

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

Time-to-recovery dominating factors

Breakdown of Startup Latency

detectionH @

control-plane/ FW

system-start: PH]%
application-start; H o S
traffic| i 3
0 50 100 150 200 250 300

Duration (Seconds)

Detection > App Startup > System Startup > Hardware Startup

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

I
Detection — Scaling on RPS

CPU target tracking is nice for gradual changes, but doesn't provide
enough information for 10x spikes

Typical CPU target is around 50% utilization
At 2x RPS, CPU is 100%
At 10x RPS, CPU is 100%

During load shedding, CPU does not reflect actual workload

CPU: 0% - 100%
RPS: O - Infinity

Detection — Scaling on RPS

Add RPS "hammer" policy — one shot to success
« Bad — 2x scales
« Good - exactly what you need
« Bad - scale way too much

I Detection — Higher resolution metrics

Custom Metrics - RPS

5-minute resolution

T-minute resolution [N [N I
s-second resolution | [FIIIINEEL TERERERRRRRE TEERRRRRRNTE

Time-to-recovery dominating factors

Breakdown of Startup Latency

detection R S [x o

3x Improvement

control-plane/ FW

system-start: PH]%
application-start; H o S
traffic| i 3
0 50 100 150 200 250 300

Duration (Seconds)

Detection > App startup > System startup > Hardware startup

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

Time-to-recovery dominating factors

Breakdown of Startup Latency

detection R S [x o

3x Improvement

control-plane/ FW

system-start: %
application-start{ H < o o >
traffic i H
0 50 100 150 200 250 300

Duration (Seconds)

Detection > App startup > System startup > Hardware startup

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

App startup hasalongtaill -

Long tail of startup delay. Vast = These are a problem!
majority under a minute. :

Worst offender took p90 of 18 |
minutes to start! =

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

Time-to-recovery dominating factors

Breakdown of Startup Latency

detection R S [xr o

3x Improvement

control-plane/ FW

system-start: %
application-start; - o = X K Eliminated the Long Tail ¢
traffic- I H
0 50 100 150 200 250 300

Duration (Seconds)

Detection > App startup > System startup > Hardware startup

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

Time-to-recovery dominating factors

Breakdown of Startup Latency

detection R S [xr o

3x Improvement

control-plane/ FW

system-start:

application-start; - o = X K Eliminated the Long Tail ¢

traffic- i H

0 50 100 150 200 250 300

Duration (Seconds)

Detection > App startup > System startup > Hardware startup

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

Start system faster - systemd-analyze

FIND UNIT CHAINS AND MAKE THEM PARALLEL

systemd-sysctl.service
chl'ony.service (4.:1145)
|ssh.servic:e (53ms)

nflx—echDtateldgs.service (32ms)
nfl:at—legacy—usqr.service (114ms)
nflx-set-hostname.service (49ms)
nflx—spillway.se-rvice
ps—rsyslog—autﬁ.service (62ms)
spectatord.ser\}ice

atlas-system-agent.service

nflx-set-hostname-postconf.service (21ms)
nﬂx-ssm-cscrlzig.service (1.348s)
docker.service (2.416s)
var-log\x2d.mount
\.ra-r—log.mount
Syélog .socket
rsyslog.sewice (6ms)
trrip.mount
ﬁflx—adn1inIogs—log.service (13ms)
nfix-otel-collector.service
riﬂx—adminlogs.service (16ms)
metatronisefvice (831ms)
var-tmp.mount
gandalf-agent.service (619ms)
kubectl-config-gen.service (337ms)
) sys-subsystem-net-devices-docker0.device
S e u e n tl a l — P a ra l le l — sys-devices-virtual-net-docker0.device
nflx-ezconfig.service (26ms)
postfix.service (1ms)
| proxyd:service (701ms)
o W FaS t proxyd-log.service (6ms)
fp-sﬁdecar.service (360ms)
fp-sidecar-log.service (7ms)
nflx-init.service (689ms)

aws

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

Time-to-recovery dominating factors

Breakdown of Startup Latency

detection- — L B e

3x Improvement

control-plane/ FW
2x Improvement

system-start %H—{ S *

application-start H . ® x x Eliminated the Long Tail x x

traffic- i H

0 50 100 150 200 250 300

Duration (Seconds)

Detection > App startup > System startup > Hardware startup

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

Results

Load Spike vs Auto Scaling

188k 5 218.8
16 .8k
186.8
14.8k 4
1568.68
12 .8k
1268.8
18.8k -
96.08
8.8k
PT 208:46 208:48 28:508 28:52 28:54 28:56 28:58 21:64 21:82 21:84 21:86 21:88 21:18 21:12 21:14 21:16
Axis B .
[Requests Per Second ~3 minute TTR
Max : 18.888k Min : 6,854k 1 * o~ 1
Yo i JEGOK M co G.De Time to detect: ~1 minute
Tot : 414,590k Gnt = 32.0666
Axis 1 . .
[l Autoscaling Group Desired Size Tlme to bOOt. ~2 minutes
Max : 213 .0648 Min : 71.888
Avg : 142 .0668 Last : 213.666
Tot : 4,544k Gnt = 32.0666
aws © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

N1

04: Stay available
Techniques to stay up

c. or its affiliates. All rights reserved.

| Build shared criticality nomenclature

Define some tags, and start tagging
Less debating, more tagging

Tag Values
Tier int:= {0, 1, 2, 3}
Blisinacs List[str] := {"svod",

) "gaming", "studio"..
domain = = b

Str := {"alpha", "beta",
Lifecycle | "ga", "deprecated",
Ileolll}

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

REEH

Spend $$ on what is
important

Different domains
scale differently

Do not waste time on
deprecated apps

Consequence

Buffer, testing
requirements

Deployment
modalities, buffer, ...

Exclude early/late
from requirements

Load begins

|
|
System Load with Buffer .
N =1
4x ~N :
n
> 4x Failure Buffer u ;
10% : :
§ : i
N
50% > 2x Success Buffer : I:I @
X N
H B E R H B B E B EEEN _.
40% J/ - .
ot B | |
]
\ pr— .
System Time < :
Resources i
|

Ttmnsit = 10m

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

Load grows

|
[|
System Load with Buffer -
|
4x /l\ ™ e :
e |
> 4x Failure Buffer =
10% T :
2x ~ B :
n
50% > 2x Success Buffer 3 :
. [|
| H B B B H B B B EEEN J ._
40% / =
[|
~ | [-
[|
System Time ” I:I .
Resources -
|

Tiransie = 1om

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

| Load sheds

System Load with Buffer

4X/l\

10%
2x

50%

40%

> 4x Failure Buffer

> 2x Success Buffer

System
Resources

aws © 2024, Amazon Web Services
N1

Time

, Inc. or its affiliates. All rights reserved.

A4

Tansit = 30m

Congestive failure — very bad

System Load with Buffer

4x /[\ ~
> 4x Failure Buffer
10%
2x '<
50% > 2x Success Buffer
X e anuptl o unnmnnn
40% / i
>
System T
Resources

R g

=
S
=
2
=

Congestive failure

aws

- . RPS - success
400.0 4 Max : 240.800
Avg : 78.881
Tot : 2.552k
D RPS - errors
st e Max : 444,183
vd.0 + Avg : 200.629
Tot : 4.213k
200.0 -
180.0 4
0.0 4

Min
Cnt

Min

Last ;

Last :

Cnt

PT 16:36 16:39 16:42 16:45

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

16:48

Instance RPS v

100.886m
433.333m
36.000

e.e00
8.e00
21.000

16:51

16:54

16:57

17:00

17:83

17:86

17:89

17:12

- 80.0

- 60.0

- 40.0

- 20.0

17:15‘

8.0

% UOTIBZTTTN

Stay up - Prioritized shedding

Enhancing Netflix Reliability with

Service-Level Prioritized Load
Success Buffer Shedding

Applying Quality of Service techniques at the application level

Prioritized CPU Shedding @

Published in Netflix TechBlog - 12 minread - Jun24

F a i l u re B u ffe r Anirudh Mendiratta, Kevin Wang, Joey Lynch, Javier Fernandez-Ivern,

Benjamin Fedorka

Unprioritized CPU Shedding ntrocuctio

In November 2020, we introduced the concept of prioritized load shedding at

the API gateway level in our blog post, Keeping Netflix Reliable Using

Prioritized Load Shedding. Today, we're excited to dive deeper into how
we've extended this strategy to the individual service level, focusing on the
video streaming control plane and data plane, to further enhance user

experience and system resilience.

Blog post:

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

| Stay up - Allocate buffers

System Load with Buffer
4x N

> 4x Failure Buffer

10%
2x ~

50%

> 2x Success Buffer
X
H B B S E EEEEEERN

v

40%
g >

stem -
y Time
Resources
aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

S

resource:
utilization:

cpu:
target: 40
max: 90

B Uffe rSUCCGSS x Tsta rtup

| Stay up — Define priority buckets

)

(-
o
o

Percentage of Requests Shed (%

]

80;

‘CRITICAL

DEGRADED

BULK

71 o

Progresswe Load Sheddlng

I—-—u--—-——-—gu—-—‘lw r

BEST EFFORT | R

aws

p—

© 2024, Amazon Web Services,

, Inc. or

its affiliates. All rights reserve

d.

40 60

80

Resource Utilization (%)

o

Stay up - Allocate buffers

System Load Under Load Spike - With Prioritizied Shedding in Success Buffer

/N
4x

10%

2x — Y

100 Failure Buffer Consumed — Shed Everyting

Success Buffer Consumed — Shed Low Priority

50%

40%

target

Time
System

Resources

/)

CRITICAL:
DEGRADED:
BEST_EFFORT:
BULK:

90
30
40
0

| Stay up — Prioritize requests

return context -> {
Request req = context.getRequest();
// Prioritize a particular path
if (req.getPath().startsWith("/critical-play-url")) {
return PriorityBucket. ;

}

// Deprioritize background requests
if (req.getParams().contains("background")) {
return PriorityBucket. ;

}

// Take the client device priority
return getClientPriority(context.getHeaders());

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

p—

| Stay up - Prioritized load shedding

|
[|
System Load with Buffer -
|
4x /l\ ™ e :
e |
> 4x Failure Buffer =
10% T :
2x ~ B :
n
50% > 2x Success Buffer o :
. [|
lllllllllllll -
.
40% / = ;2
[|
g . L i
System Time ” I:I :
Resources - I
|

Tansit = 15m

Shed the right load

6.00k

4,00k

2.00k -

Non-critical
shedding staris

11:00
Show ALl Hide All
Min Max Avg
201 1.48k 1.24k
375m 4.59k 2.49k
11.5 91.0 73.5
dws © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

N1

Instance RPS vs CPU

Critical shedding starts

11:10

Total
60.7k
102k

3.60k

11:20 11:30

Filter:

Name

.RPS - success
RPS - errors
.CPU utilization

- 80.0

- 60.0

- 40.0

% UOT1RZT1TIN

20.0

11:40

Visibility
® v O
® v O
® v O

| Are retries a good idea?

CPU Utilization Spread Max-Avg

Shed from here

Min Max Avg Total Name
37.4 46.0 41.1 781 B Maximum Utilization
a0 37.4 39.9 38.7 734 [Average utilization

32

c

=

+ 42.84

o

Y]

e

—~

-

]

5 L

>

o

(W}

40.0 R S PP O PSP NP OSSP PO PO I
H _l v y
38‘@- :
— T T T T T T T
PDT 15:40 15:42 15:44 15:46 15:48 15:58 15:52 15:54 15:56 15:58
uTC 22:40 22:42 22:44 22:46 22:48 22:58 22:52 22:54 22:56 22:58
aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

N1

| Retry sparingly

Full jitter exponential backoff on shedding only

interceptor.retry.default.maxRetries

aws
-

1.r.d.statuses

.r.d.bac
.bac
.bac
.bac
.bac

— e e de
S Y 7Y M
O O O O

koffPo’
koffPo’
koffPo’
koffPo’

koffPO

1Ccy

1Cy.
1Cy.
1Cy.
1Cy.

=

= UNAVAILABLE
= exponential
ji1tterMode
targetMillis
delayMillis
maxDelayMillis

let R = retry# € [0, 1, 2, ... retry, — 1]

base(R)

retry(R)

= min (delay, target X (R + 1)2)
= rand[O, min{delaymax; base(R) X zR})

full

— 0
—)

1000

Fast start full jitter

Fast Start Full J|tter

1000 Fast Start Full Jltter [Target 20, Delay=100, Max= 1000]
Normal Full Jitter [Delay=100, Max=1000]
800
)]
£
>
5 600
o
L
12
S 400
N
O
3
200 (
0) N -
-1 2 3 4

aWS © 2024, Amazon Web Services, Inc. or its affili Retry CO u nt
S

More capacity is the real solution

Recovery Time
Constant Ty

\4

Buffer Recovering After Load Spike o E E E E
- JiE g
4x : : : : i : & :
2x --SK" ----- B : K : Gl : [:

X RO . Buffers Expanded — : K : B : E :

yd S L s TR S

Ttmnsit = 15m

What about 10 bound services?

CPU CAPACITY IS NECESSARY, BUT NOT SUFFICIENT!

Most services talk to other services

Async calls don't take much CPU

Gateway === Service === Gi5rage

Latency???

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

)-ﬂ
I
S
=
2.

I
=

s

What about 10 bound services?

CPU CAPACITY IS NECESSARY, BUT NOT SUFFICIENT!

Most services talk to other services

Async calls don't take much CPU

Gateway === Service === i5rage

' Measure latency as utilization

Service Latency as Utilization

/-\ — Normal Service Time p=3, p95=240
Target Latency @ 50ms

0.020

o
o
-
un
/

=
o
=
o

o
o
o
o

Requests Completed By (%)

@et Latency Utilization = 0.21

0.000 e —

50 100 150 200 250 300 350 400
Request Latency (ms)

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

Measure latency as utilization

Service Latency as Ut|I|zat|on

/\ — Normal Serv1ce Tlme u=3, pP95=240
0.020 —— Degraded Service Time p=150, p95=1000 |
‘ Target Latency @ 50ms

gg

)

_3(3015 /

i

()]

g

6 0.010 \

@)

i)

(V)]

= Target Latency Utilization = 0.88!

E 0.005 e ——
hﬁﬁﬁ“‘“‘-ﬁhﬁhﬁhhhﬁh

\'—————___
0.000 e
50 100 150 200 250 300 350 400
Request Latency (ms)
aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

S

| Stay up - Allocate 10 success buffer

System Load with Buffer
4x N

10%

50%

> 4x Failure Buffer

> 2x Success Buffer

v
40%
g >
stem -
y Time
Resources
aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

S

resource:
utilization:
kv-slo:
target: 40
max: 80
limiter:
kv-slo:
enabled: true
utilization:
source: kv-slo
buffer: success

Stay up — Add 10 limiters

Client Request RPS

2.6k ‘
1.6k 4
1.2k 4
Apply 50Gbps+
8.8k 4 —
. A
8.4k ".44 1 — 4
| . M J .
o.exd J, ' ' e — ' ' ' ' S—
PT 14:20 14:38 14:48 14:58 15:80 15:10 15:20 15:38 15:48
M 1pc.client.call
Max : 2.001k nin 9.000
Avg : 839.383 Last : 0.000
Tot : 68.612k Cnt 73.008

Frame: 85a, End: 2024-83-87715:41-08:00|US/Pacific), Step: 1m
Fetch: 7ms (L: 340.0, 149.0, 1.0: D: 20.4k, 12.8x, 85.0k)

aws

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

‘.6‘4
1.2k 4
9.8k 4
0.4k 4)
|
e.0kJ 1
PT 14:298 14:38
| 200
Max @ 2. 008k
Avg : 823.162
Tot : 60,091k
W 404
| Max : 533.333
Avg : 31.373a
‘ Tot : 1.867
[503 (failure)
‘ Max : 171.867
Avg : 13.006
Tot : S520.2

Client Request Status

)
14:48

Push to breaking

24

. ~

' T 1
15:00 15:10 15:38

15:29

)
15:48

Stay up — Add prioritized 10 limiters

Client Request Endpoint/Failure %

Never shed

« High-priority writes
] -_ /' g y

Ensure only

low priority files 0
shed by limiter At 80% max shed

3.6
[] [] [)
- High-priority reads
8.0 '] ' T ' ' f
T 14:28 14:38 14:49 14:58 15:8@ 15:18 15:28 15:3¢2 15:48
[l read failure (low priority)
Max 7.18) n L]
Avg 1.318 st 8 e
Tot $2.729 Cnt 40 . 000
0 [] [] [
Frome: 85, End: 2024-03-07115:41-88:00[US/Pacsfic], Step: 1a At 40% taraet utilization she
Fetch: 7ms (L: 1.3k, 405.0. 1.9: D: 76.1k, 34.8kx, 85.0x
[] [
« Low-priority reads
aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

S

Stay up — Add 10 limiters

Resource limiter KV_SLO resource utilization and throttle

80.90
60.0 4
Shed in reaction to KV latency
vyl target utilization exceeding 40%
!
|
20.0 4 -
0.0 4 ey ' ' Y — t T v —— r T T
PT 14:15 14:20 14:25 14:38 14:35 14:48 14:45 14:58 14:55 15:08 15:85 15:1@ 15:15 1

@ netflix.resource.limiter.linear.percentage

Max 82.000 Min 9.000
Avg 6.435 Last 9.000
Tot : 547.000 Cnt 85.000
[retflix.resource.limiter.resource.utilization
Max : 73.000 Min 0.000
Avg : 20.212 Last 10.000
Tot : 1.718k (nt 85.000

aws

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

5:20 15:25 15:30

15:35

15:48

o ® [®
Stay up - Prioritized shedding [
—
y p g Some services are not CPU-bound but instead are I0-bound by backing

services or datastores that can apply back pressure via increased latency
[]
S u C C e S S b u ffe r' S h e d d I n g when they are overloaded either in compute or in storage capacity. For these
services we re-use the prioritized load shedding techniques, but we
o IRNTEN introduce new utilization measures to feed into the shedding logic. Our
P r I O r I t Ize d [‘ P U] initial implementation supports two forms of latency based shedding in
addition to standard adaptive concurrency limiters (themselves a measure of
o 't . [L t t t] average latency):
y g 1. The service can specify per-endpoint target and maximum latencies,
which allow the service to shed when the service is abnormally slow

regardless of backend.

2. The Netflix storage services running on the Data Gateway return

F ° l b ff h d d . observed storage target and max latency SLO utilization, allowing

a I u r e u e r S e I n g services to shed when they overload their allocated storage capacity.

U n r i O r i t i Z e d [c P U] These utilization measures provide early warning signs that a service is
p generating too much load to a backend, and allow it to shed low priority

work before it overwhelms that backend. The main advantage of these
[L t n t i m t] techniques over concurrency limits alone is they require less tuning as our
a e cy e 0 u services already must maintain tight latency service-level-objectives (SLOs),
for example a p50 < 10ms and p100 < 500ms. So, rephrasing these existing
SLOs as utilizations allows us to shed low priority work early to prevent

further latency impact to high priority work. At the same time, the system

will accept as much work as it can while maintaining SLO’s.

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

https://netflixtechblog.com/enhancing-netflix-reliability-with-service-level-prioritized-load-shedding-e735e6ce8f7d

FILLE S

Prio=2
ﬁ

Backend A

Prio=17 auul

ﬁ

Prio=3
Backend B

us-east-2

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

https://netflixtechblog.com/keeping-netflix-reliable-using-prioritized-load-shedding-6cc827b02f94

| FILLE S

Prio=2
ﬁ
Backend A
: Zuul W)
Prio=17 e
ﬁ x
—1
Prio=3
o Backend B
ST | e
us-east-2
aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

S

https://netflixtechblog.com/keeping-netflix-reliable-using-prioritized-load-shedding-6cc827b02f94

Fallback and shift

Prio=2
ﬁ
Backend A
: Zuul ‘)
| Prio=99
Prio=3
ﬁ
ST — —
/w 3 N /w
Pl | | el
us-east-2 | Active us-east-1
aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

S

https://netflixtechblog.com/keeping-netflix-reliable-using-prioritized-load-shedding-6cc827b02f94

| Fallback and shift

Prio=2
ﬁ
Backend A
: Zuul W 7
Prio=17 m&u aut
| —@
Prio=99 .
Prio=3
ﬁ
ol | - | P
us-east-2 | Active us-east-1
aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

S

https://netflixtechblog.com/keeping-netflix-reliable-using-prioritized-load-shedding-6cc827b02f94

05: Resilience testin
Validating the techniques

aws © 2024, Al » r c. or its affiliates. All rights reserved.
~ 2) %

The resilience testing pyramid

Testing pyramid Resilience testing pyramid

Region

E2E
/ Scale \
Integration
Production load
/ Unit \ / Synthetic load \

Service-level synthetic load testing

Use synthetic traffic to test an application in
isolation

Find bottlenecks in application code and tune

load shedding configs / \
/ Synthetic load \

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

Production load testing

Autoscaling squeeze test through our Chaos
Automation Platform

Introduces a load spike to a service to test
how load shedding and autoscaling behave \

Tests the actual production config with real / \
Production load

traffic

I
Region scale

Move all global traffic into a single region

Uses regional failover tooling

Finds issues only seen at scale: load that / » \
caie

scales with:

- # of instances / \
. # of RPS / \

aWS’ © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

Region load testing

E2E tests that simulate user behavior

Uses synthetic traffic against the production
Netflix API

Simulate title launches and failure scenarios

Lets us test scales that are even bigger than
our current global peak

c. or its affiliates. All rights reserved.

. :
Measuring success

Buffer Recovering After Load Spike

8x /N
4x
2x D = -SK" EEmmn
* -/-- EEmmmmEm . Buffers Expanded
W_J
Recovery Time
Constant Ty

V

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

Goals:

Reduce time to recover

Use regional failover less as the
primary remediation

Build resiliency assuming load
spikes are the norm

Takeaways

Handling load spikes is a mix of proactive and reactive mechanisms:
investing in both is important!

Use your existing compute resources to answer only the most
important requests. Fail quickly when overloaded.

Test. In Prod. As often as possible.

aWS’ © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

' ey Please complete the session
y u ") _Diz@ survey in the mobile app

Rob Gulewich Ryan Schroeder Joseph Lynch

rgulewich@netflix.com rschroeder@netflix.com josephl@netflix.com
jolynch.github.io/

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

	Presentation
	Slide 1
	Slide 2: How Netflix handles sudden load spikes in the cloud
	Slide 3
	Slide 4: Agenda
	Slide 5: 01: Problem Load spikes at Netflix
	Slide 6: Netflix cloud topology
	Slide 7: Gradual traffic increases are the norm
	Slide 8: Load spikes are common
	Slide 9: Fast failover is a load spike
	Slide 10: Sources of unexpected traffic surges
	Slide 11: Thousands of microservices – Complex downstream call graph
	Slide 12: Thousands of microservices – Different headroom
	Slide 13: Our business is evolving
	Slide 14: 02: Capacity plan Load is often predictable
	Slide 15: Scale on a schedule
	Slide 16: Prescaling
	Slide 17: Shape on a schedule
	Slide 18: 03: Scale out of trouble Predictions are often wrong
	Slide 19: Autoscaling during steady state
	Slide 20: Autoscaling during steady state
	Slide 21: Autoscaling during load spikes
	Slide 22: Autoscaling during load spikes
	Slide 23: Components of time-to-recovery
	Slide 24: Experimentation setup
	Slide 25: Time-to-recovery dominating factors
	Slide 26: Time-to-recovery dominating factors
	Slide 27: Detection – Scaling on RPS
	Slide 28: Detection – Scaling on RPS
	Slide 29: Detection – Higher resolution metrics
	Slide 30: Time-to-recovery dominating factors
	Slide 31: Time-to-recovery dominating factors
	Slide 32: App startup has a long tail
	Slide 33: Time-to-recovery dominating factors
	Slide 34: Time-to-recovery dominating factors
	Slide 35: Start system faster – systemd-analyze
	Slide 36: Time-to-recovery dominating factors
	Slide 37: Results
	Slide 38: 04: Stay available Techniques to stay up
	Slide 39: Build shared criticality nomenclature
	Slide 40: Load begins
	Slide 41: Load grows
	Slide 42: Load sheds
	Slide 43: Congestive failure – very bad
	Slide 44: Congestive failure
	Slide 45: Stay up – Prioritized shedding
	Slide 46: Stay up – Allocate buffers
	Slide 47: Stay up – Define priority buckets
	Slide 48: Stay up – Allocate buffers
	Slide 49: Stay up – Prioritize requests
	Slide 50: Stay up – Prioritized load shedding
	Slide 51: Shed the right load
	Slide 52: Are retries a good idea?
	Slide 53: Retry sparingly
	Slide 54: Fast start full jitter
	Slide 55: More capacity is the real solution
	Slide 56: What about IO bound services?
	Slide 57: What about IO bound services?
	Slide 58: Measure latency as utilization
	Slide 59: Measure latency as utilization
	Slide 60: Stay up – Allocate IO success buffer
	Slide 61: Stay up – Add IO limiters
	Slide 62: Stay up – Add prioritized IO limiters
	Slide 63: Stay up – Add IO limiters
	Slide 64: Stay up – Prioritized shedding
	Slide 65: Fallbacks!
	Slide 66: Fallbacks!
	Slide 67: Fallback and shift
	Slide 68: Fallback and shift
	Slide 69: 05: Resilience testing Validating the techniques
	Slide 70: The resilience testing pyramid
	Slide 71: Service-level synthetic load testing
	Slide 72: Production load testing
	Slide 73: Region scale
	Slide 74: Region load testing
	Slide 75: 06: Conclusions and wrap-up
	Slide 76: Measuring success
	Slide 77: Takeaways
	Slide 78

