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Agenda

01 Problem: Load spikes 05 Experiment: Test resilience

02 Solution: Predict and plan 06 Conclusions and wrap up

03 Solution: React quickly

04 Solution: Stay available
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01: Problem
Load spikes at Netflix 
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Netflix cloud topology

us-east-2

us-east-1
us-west-2

eu-west-1
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Gradual traffic increases are the norm

~10x 

peak

trough

24-hour 

periodicity

Traffic

phase shifts

Starts per 

second (SPS)
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Load spikes are common

Failovers due to:

• Regular practice

• Bad software deployment

• Regional impairment
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Fast failover is a load spike

On Evacuation

Up to 2x traffic to saviors (variable)

 in 1 minute

Long tail traffic takes ~5 minutes

Intelligent steering to minimize spike

On Restore

Up to 100x traffic to evacuated

Reintroduce traffic over 5-10 

minutes
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Sources of unexpected traffic surges

Long surges

Title launches

External events (soccer matches, other 

sites down)

Short spikes

Retry storms

Device bugs
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Thousands of microservices – Complex 
downstream call graph

Blog post:

Svc A

2x

Tier=0

Svc B

1.2x

Tier=1

Svc C

4x

Tier=2

Regional

2x Spike



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Thousands of microservices – Different headroom

Every service operates with two key Buffers

Success buffer Headroom before errors (bad)

Failure buffer Headroom before congestive collapse (very bad)
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Our business is evolving

Changing business needs:

• More frequent big title launches

• More global launches

Goals:

• Reduce time to recover

• Use regional failover less as the 

primary remediation

• Build resiliency assuming load 

spikes are the norm
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02: Capacity plan
Load is often predictable 
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Scale on a schedule
• If we know when traffic is going to arrive, prescale services 

beforehand to match the predicted load

• Autoscaling is designed for reactive scaling of individual services

Prescale Spike Downscale
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Prescaling

• Use the failover system to scale up the entire streaming fleet

• Maps regional SPS to RPS per instance and calculates new min. sizes

Increase mins to match 

expected spike

Decrease mins to 

normal levels

Autoscaling Group:

• Blue: min

• Brown: desired

• Green: instances up
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Shape on a schedule

• Some title launches are centered in a specific geography

• For large launches, we can proactively steer users to other regions to 
balance global capacity usage
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03: Scale out of trouble
Predictions are often wrong 
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Autoscaling during steady state
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Autoscaling during steady state

Smooth 

Increase

Smooth 

Decrease
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Autoscaling during load spikes
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Autoscaling during load spikes

Time to detect: ~4 minutes

Time to boot: ~6 minutes

Time to detect: ~2 minutes

~60k RPS

Increase

Gradual

autoscaling
Repeated

autoscaling

~20 minute TTR
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Components of time-to-recovery

Stage Description

Detection Scaling alarm triggers

Control plane Hardware online

System startup
Kernel and base systemd 

units started

Application 

startup
Microservice started

Traffic Traffic arrives
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Experimentation setup

• Synthetic load generation

• Baseline vs. experiment comparison

• Variations of scaling policy configurations
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Time-to-recovery dominating factors

Detection > App Startup > System Startup > Hardware Startup
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Time-to-recovery dominating factors

Detection > App Startup > System Startup > Hardware Startup
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Detection – Scaling on RPS

CPU:   0% - 100%

RPS:   0 - Infinity

CPU target tracking is nice for gradual changes, but doesn't provide 
enough information for 10x spikes

•      Typical CPU target is around 50% utilization

•      At 2x RPS, CPU is 100%

•      At 10x RPS, CPU is also 100%

During load shedding, CPU does not reflect actual workload 
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Detection – Scaling on RPS

Add RPS "hammer" policy – one shot to success

• Bad – 2x scales

• Good – exactly what you need

• Bad – scale way too much
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Detection – Higher resolution metrics

CloudWatch

EC2

1-minute resolution

5-second resolution

5-minute resolution

Atlas
Custom Metrics - RPS
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Time-to-recovery dominating factors

Detection > App startup > System startup > Hardware startup

3x Improvement
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Time-to-recovery dominating factors

3x Improvement

Detection > App startup > System startup > Hardware startup
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App startup has a long tail

Long tail of startup delay. Vast 

majority under a minute.

Worst offender took p90 of 18 

minutes to start!

These are a problem!
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Time-to-recovery dominating factors

Detection > App startup > System startup > Hardware startup

3x Improvement

Eliminated the Long Tail
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Time-to-recovery dominating factors

3x Improvement

Eliminated the Long Tail

Detection > App startup > System startup > Hardware startup
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Start system faster – systemd-analyze
F I N D  U N I T  C H A I N S  A N D  M A K E  T H E M  P A R A L L E L

Sequential -

Slow

Parallel -

Fast
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Time-to-recovery dominating factors

Detection > App startup > System startup > Hardware startup

3x Improvement

Eliminated the Long Tail

2x Improvement
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Results

>2x RPS

Increase

Rapid, single-step

autoscaling

Time to detect: ~1 minute

Time to boot: ~2 minutes

~3 minute TTR
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04: Stay available
Techniques to stay up
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Build shared criticality nomenclature

Define some tags, and start tagging

Less debating, more tagging

Tag Values Reason Consequence

Tier int:= {0, 1, 2, 3}
Spend $$ on what is 

important

Buffer, testing 

requirements

Business 

domain

List[str] := {"svod", 

"gaming", "studio"…}
Different domains 

scale differently

Deployment 

modalities, buffer, ...

Lifecycle
Str := {"alpha", "beta", 

"ga", "deprecated", 

"eol"}

Do not waste time on 

deprecated apps

Exclude early/late 

from requirements
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Load begins
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Load grows
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Load sheds
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Congestive failure – very bad
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Congestive failure
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Stay up – Prioritized shedding

Success Buffer

Prioritized CPU Shedding

Failure Buffer

Unprioritized CPU Shedding

Blog post:
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Stay up – Allocate buffers

resource:

  utilization:

  cpu:

      target: 40

  max: 90
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Stay up – Define priority buckets
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Stay up – Allocate buffers
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Stay up – Prioritize requests
return context -> {

  Request req = context.getRequest();

  // Prioritize a particular path

  if (req.getPath().startsWith("/critical-play-url")) {

    return PriorityBucket.CRITICAL;

  }

  // Deprioritize background requests

  if (req.getParams().contains("background")) {

    return PriorityBucket.DEGRADED;

  }

  // Take the client device priority

 return getClientPriority(context.getHeaders());

}
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Stay up – Prioritized load shedding
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Shed the right load
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Are retries a good idea?

Shed from here

Retry to here
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Retry sparingly
# Full jitter exponential backoff on shedding only

interceptor.retry.default.maxRetries    = 2

                    i.r.d.statuses      = UNAVAILABLE

                    i.r.d.backoffPolicy = exponential

                    i.r.d.backoffPolicy.jitterMode     = full

                    i.r.d.backoffPolicy.targetMillis   = 20

                    i.r.d.backoffPolicy.delayMillis    = 100

                    i.r.d.backoffPolicy.maxDelayMillis = 1000
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Fast start full jitter
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More capacity is the real solution
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What about IO bound services?
C P U  C A P A C I T Y  I S  N E C E S S A R Y ,  B U T  N O T  S U F F I C I E N T !  

Most services talk to other services

Async calls don't take much CPU

Gateway Service Storage

Latency???
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What about IO bound services?
C P U  C A P A C I T Y  I S  N E C E S S A R Y ,  B U T  N O T  S U F F I C I E N T !  

Most services talk to other services

Async calls don't take much CPU

Gateway Service Storage
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Measure latency as utilization
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Measure latency as utilization
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Stay up – Allocate IO success buffer

resource:

  utilization:

  kv-slo:

      target: 40

  max: 80

  limiter:

kv-slo:

 enabled: true

 utilization:

 source: kv-slo

 buffer: success
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Stay up – Add IO limiters
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Stay up – Add prioritized IO limiters

Never shed

• High-priority writes

At 80% max shed

• High-priority reads

 At 40% target utilization shed

• Low-priority reads
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Stay up – Add IO limiters
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Stay up – Prioritized shedding
Success buffer shedding

Prioritized [CPU]

Prioritized [Latency target] 

Failure buffer shedding

Unprioritized [CPU] 

[Latency timeout]

https://netflixtechblog.com/enhancing-netflix-reliability-with-service-level-prioritized-load-shedding-e735e6ce8f7d

https://netflixtechblog.com/enhancing-netflix-reliability-with-service-level-prioritized-load-shedding-e735e6ce8f7d
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Fallbacks!

Zuul

Backend A

Backend B

Prio=2

Prio=17

Prio=3

us-east-2

https://netflixtechblog.com/keeping-netflix-reliable-using-prioritized-load-shedding-6cc827b02f94

https://netflixtechblog.com/keeping-netflix-reliable-using-prioritized-load-shedding-6cc827b02f94


© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Fallbacks!

Zuul

Backend A

Backend B

Prio=2

Prio=17

Prio=3

us-east-2

https://netflixtechblog.com/keeping-netflix-reliable-using-prioritized-load-shedding-6cc827b02f94

https://netflixtechblog.com/keeping-netflix-reliable-using-prioritized-load-shedding-6cc827b02f94
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Fallback and shift

Zuul

Prio=2

Prio=17

Prio=3

us-east-2

Backend A

us-east-1

Zuul

Prio=99

Full

 Active

https://netflixtechblog.com/keeping-netflix-reliable-using-prioritized-load-shedding-6cc827b02f94

https://netflixtechblog.com/keeping-netflix-reliable-using-prioritized-load-shedding-6cc827b02f94
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Fallback and shift

Zuul

Prio=2

Prio=17

Prio=3

us-east-2

Backend A

us-east-1

Zuul

Prio=99

Full

 Active

https://netflixtechblog.com/keeping-netflix-reliable-using-prioritized-load-shedding-6cc827b02f94

https://netflixtechblog.com/keeping-netflix-reliable-using-prioritized-load-shedding-6cc827b02f94
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05: Resilience testing
Validating the techniques
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The resilience testing pyramid

Testing pyramid Resilience testing pyramid

E2E

Integration

Unit

Region

Scale

Production load

Synthetic load
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Service-level synthetic load testing

Use synthetic traffic to test an application in 
isolation

Find bottlenecks in application code and tune 
load shedding configs

Region

Scale

Production load

Synthetic load
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Production load testing

Autoscaling squeeze test through our Chaos 
Automation Platform

Introduces a load spike to a service to test 
how load shedding and autoscaling behave

Tests the actual production config with real 
traffic

Region

Scale

Production load

Synthetic load
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Region scale

Move all global traffic into a single region

Uses regional failover tooling

Finds issues only seen at scale: load that 
scales with:

• # of instances

• # of RPS

Region

Scale

Production load

Synthetic load
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Region load testing

E2E tests that simulate user behavior

Uses synthetic traffic against the production 
Netflix API

Simulate title launches and failure scenarios

Lets us test scales that are even bigger than 
our current global peak

Region

Scale

Production load

Synthetic load
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06: Conclusions and wrap-up



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Measuring success

Goals:

• Reduce time to recover

• Use regional failover less as the 

primary remediation

• Build resiliency assuming load 

spikes are the norm
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Takeaways

Handling load spikes is a mix of proactive and reactive mechanisms: 
investing in both is important!

Use your existing compute resources to answer only the most 
important requests. Fail quickly when overloaded.

Test. In Prod. As often as possible.
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Thank you!
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Please complete the session 
survey in the mobile app

Rob Gulewich

rgulewich@netflix.com 

Ryan Schroeder Joseph Lynch

rschroeder@netflix.com josephl@netflix.com

jolynch.github.io/
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