
© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

How Netflix handles sudden
load spikes in the cloud

Rob Gulewich

N F X 3 0 1

(he/him)

Principal Software Engineer

Netflix

Ryan Schroeder Joseph Lynch

(he/him)

Staff Software Engineer

Netflix

(he/him)

Principal Software Engineer

Netflix

Manju Prasad

(she/her)

Sr. Solutions Architect

Amazon

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Rob Gulewich

Principal Software Engineer

Netflix Platform

Ryan Schroeder Joseph Lynch

Staff Software Engineer

Netflix Reliability

Principal Software Engineer

Netflix Data Platform

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Agenda

01 Problem: Load spikes 05 Experiment: Test resilience

02 Solution: Predict and plan 06 Conclusions and wrap up

03 Solution: React quickly

04 Solution: Stay available

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

01: Problem
Load spikes at Netflix

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Netflix cloud topology

us-east-2

us-east-1
us-west-2

eu-west-1

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Gradual traffic increases are the norm

~10x

peak

trough

24-hour

periodicity

Traffic

phase shifts

Starts per

second (SPS)

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Load spikes are common

Failovers due to:

• Regular practice

• Bad software deployment

• Regional impairment

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Fast failover is a load spike

On Evacuation

Up to 2x traffic to saviors (variable)

 in 1 minute

Long tail traffic takes ~5 minutes

Intelligent steering to minimize spike

On Restore

Up to 100x traffic to evacuated

Reintroduce traffic over 5-10

minutes

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Sources of unexpected traffic surges

Long surges

Title launches

External events (soccer matches, other

sites down)

Short spikes

Retry storms

Device bugs

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Thousands of microservices – Complex
downstream call graph

Blog post:

Svc A

2x

Tier=0

Svc B

1.2x

Tier=1

Svc C

4x

Tier=2

Regional

2x Spike

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Thousands of microservices – Different headroom

Every service operates with two key Buffers

Success buffer Headroom before errors (bad)

Failure buffer Headroom before congestive collapse (very bad)

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Our business is evolving

Changing business needs:

• More frequent big title launches

• More global launches

Goals:

• Reduce time to recover

• Use regional failover less as the

primary remediation

• Build resiliency assuming load

spikes are the norm

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

02: Capacity plan
Load is often predictable

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Scale on a schedule
• If we know when traffic is going to arrive, prescale services

beforehand to match the predicted load

• Autoscaling is designed for reactive scaling of individual services

Prescale Spike Downscale

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Prescaling

• Use the failover system to scale up the entire streaming fleet

• Maps regional SPS to RPS per instance and calculates new min. sizes

Increase mins to match

expected spike

Decrease mins to

normal levels

Autoscaling Group:

• Blue: min

• Brown: desired

• Green: instances up

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Shape on a schedule

• Some title launches are centered in a specific geography

• For large launches, we can proactively steer users to other regions to
balance global capacity usage

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

03: Scale out of trouble
Predictions are often wrong

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Autoscaling during steady state

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Autoscaling during steady state

Smooth

Increase

Smooth

Decrease

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Autoscaling during load spikes

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Autoscaling during load spikes

Time to detect: ~4 minutes

Time to boot: ~6 minutes

Time to detect: ~2 minutes

~60k RPS

Increase

Gradual

autoscaling
Repeated

autoscaling

~20 minute TTR

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Components of time-to-recovery

Stage Description

Detection Scaling alarm triggers

Control plane Hardware online

System startup
Kernel and base systemd

units started

Application

startup
Microservice started

Traffic Traffic arrives

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Experimentation setup

• Synthetic load generation

• Baseline vs. experiment comparison

• Variations of scaling policy configurations

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Time-to-recovery dominating factors

Detection > App Startup > System Startup > Hardware Startup

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Time-to-recovery dominating factors

Detection > App Startup > System Startup > Hardware Startup

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Detection – Scaling on RPS

CPU: 0% - 100%

RPS: 0 - Infinity

CPU target tracking is nice for gradual changes, but doesn't provide
enough information for 10x spikes

• Typical CPU target is around 50% utilization

• At 2x RPS, CPU is 100%

• At 10x RPS, CPU is also 100%

During load shedding, CPU does not reflect actual workload

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Detection – Scaling on RPS

Add RPS "hammer" policy – one shot to success

• Bad – 2x scales

• Good – exactly what you need

• Bad – scale way too much

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Detection – Higher resolution metrics

CloudWatch

EC2

1-minute resolution

5-second resolution

5-minute resolution

Atlas
Custom Metrics - RPS

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Time-to-recovery dominating factors

Detection > App startup > System startup > Hardware startup

3x Improvement

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Time-to-recovery dominating factors

3x Improvement

Detection > App startup > System startup > Hardware startup

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

App startup has a long tail

Long tail of startup delay. Vast

majority under a minute.

Worst offender took p90 of 18

minutes to start!

These are a problem!

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Time-to-recovery dominating factors

Detection > App startup > System startup > Hardware startup

3x Improvement

Eliminated the Long Tail

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Time-to-recovery dominating factors

3x Improvement

Eliminated the Long Tail

Detection > App startup > System startup > Hardware startup

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Start system faster – systemd-analyze
F I N D U N I T C H A I N S A N D M A K E T H E M P A R A L L E L

Sequential -

Slow

Parallel -

Fast

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Time-to-recovery dominating factors

Detection > App startup > System startup > Hardware startup

3x Improvement

Eliminated the Long Tail

2x Improvement

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Results

>2x RPS

Increase

Rapid, single-step

autoscaling

Time to detect: ~1 minute

Time to boot: ~2 minutes

~3 minute TTR

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

04: Stay available
Techniques to stay up

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Build shared criticality nomenclature

Define some tags, and start tagging

Less debating, more tagging

Tag Values Reason Consequence

Tier int:= {0, 1, 2, 3}
Spend $$ on what is

important

Buffer, testing

requirements

Business

domain

List[str] := {"svod",

"gaming", "studio"…}
Different domains

scale differently

Deployment

modalities, buffer, ...

Lifecycle
Str := {"alpha", "beta",

"ga", "deprecated",

"eol"}

Do not waste time on

deprecated apps

Exclude early/late

from requirements

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Load begins

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Load grows

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Load sheds

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Congestive failure – very bad

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Congestive failure

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Stay up – Prioritized shedding

Success Buffer

Prioritized CPU Shedding

Failure Buffer

Unprioritized CPU Shedding

Blog post:

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Stay up – Allocate buffers

resource:

 utilization:

 cpu:

 target: 40

 max: 90

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Stay up – Define priority buckets

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Stay up – Allocate buffers

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Stay up – Prioritize requests
return context -> {

 Request req = context.getRequest();

 // Prioritize a particular path

 if (req.getPath().startsWith("/critical-play-url")) {

 return PriorityBucket.CRITICAL;

 }

 // Deprioritize background requests

 if (req.getParams().contains("background")) {

 return PriorityBucket.DEGRADED;

 }

 // Take the client device priority

 return getClientPriority(context.getHeaders());

}

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Stay up – Prioritized load shedding

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Shed the right load

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Are retries a good idea?

Shed from here

Retry to here

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Retry sparingly
Full jitter exponential backoff on shedding only

interceptor.retry.default.maxRetries = 2

 i.r.d.statuses = UNAVAILABLE

 i.r.d.backoffPolicy = exponential

 i.r.d.backoffPolicy.jitterMode = full

 i.r.d.backoffPolicy.targetMillis = 20

 i.r.d.backoffPolicy.delayMillis = 100

 i.r.d.backoffPolicy.maxDelayMillis = 1000

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Fast start full jitter

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

More capacity is the real solution

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What about IO bound services?
C P U C A P A C I T Y I S N E C E S S A R Y , B U T N O T S U F F I C I E N T !

Most services talk to other services

Async calls don't take much CPU

Gateway Service Storage

Latency???

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What about IO bound services?
C P U C A P A C I T Y I S N E C E S S A R Y , B U T N O T S U F F I C I E N T !

Most services talk to other services

Async calls don't take much CPU

Gateway Service Storage

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Measure latency as utilization

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Measure latency as utilization

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Stay up – Allocate IO success buffer

resource:

 utilization:

 kv-slo:

 target: 40

 max: 80

 limiter:

kv-slo:

 enabled: true

 utilization:

 source: kv-slo

 buffer: success

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Stay up – Add IO limiters

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Stay up – Add prioritized IO limiters

Never shed

• High-priority writes

At 80% max shed

• High-priority reads

 At 40% target utilization shed

• Low-priority reads

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Stay up – Add IO limiters

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Stay up – Prioritized shedding
Success buffer shedding

Prioritized [CPU]

Prioritized [Latency target]

Failure buffer shedding

Unprioritized [CPU]

[Latency timeout]

https://netflixtechblog.com/enhancing-netflix-reliability-with-service-level-prioritized-load-shedding-e735e6ce8f7d

https://netflixtechblog.com/enhancing-netflix-reliability-with-service-level-prioritized-load-shedding-e735e6ce8f7d

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Fallbacks!

Zuul

Backend A

Backend B

Prio=2

Prio=17

Prio=3

us-east-2

https://netflixtechblog.com/keeping-netflix-reliable-using-prioritized-load-shedding-6cc827b02f94

https://netflixtechblog.com/keeping-netflix-reliable-using-prioritized-load-shedding-6cc827b02f94

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Fallbacks!

Zuul

Backend A

Backend B

Prio=2

Prio=17

Prio=3

us-east-2

https://netflixtechblog.com/keeping-netflix-reliable-using-prioritized-load-shedding-6cc827b02f94

https://netflixtechblog.com/keeping-netflix-reliable-using-prioritized-load-shedding-6cc827b02f94

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Fallback and shift

Zuul

Prio=2

Prio=17

Prio=3

us-east-2

Backend A

us-east-1

Zuul

Prio=99

Full

 Active

https://netflixtechblog.com/keeping-netflix-reliable-using-prioritized-load-shedding-6cc827b02f94

https://netflixtechblog.com/keeping-netflix-reliable-using-prioritized-load-shedding-6cc827b02f94

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Fallback and shift

Zuul

Prio=2

Prio=17

Prio=3

us-east-2

Backend A

us-east-1

Zuul

Prio=99

Full

 Active

https://netflixtechblog.com/keeping-netflix-reliable-using-prioritized-load-shedding-6cc827b02f94

https://netflixtechblog.com/keeping-netflix-reliable-using-prioritized-load-shedding-6cc827b02f94

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

05: Resilience testing
Validating the techniques

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

The resilience testing pyramid

Testing pyramid Resilience testing pyramid

E2E

Integration

Unit

Region

Scale

Production load

Synthetic load

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Service-level synthetic load testing

Use synthetic traffic to test an application in
isolation

Find bottlenecks in application code and tune
load shedding configs

Region

Scale

Production load

Synthetic load

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Production load testing

Autoscaling squeeze test through our Chaos
Automation Platform

Introduces a load spike to a service to test
how load shedding and autoscaling behave

Tests the actual production config with real
traffic

Region

Scale

Production load

Synthetic load

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Region scale

Move all global traffic into a single region

Uses regional failover tooling

Finds issues only seen at scale: load that
scales with:

• # of instances

• # of RPS

Region

Scale

Production load

Synthetic load

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Region load testing

E2E tests that simulate user behavior

Uses synthetic traffic against the production
Netflix API

Simulate title launches and failure scenarios

Lets us test scales that are even bigger than
our current global peak

Region

Scale

Production load

Synthetic load

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

06: Conclusions and wrap-up

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Measuring success

Goals:

• Reduce time to recover

• Use regional failover less as the

primary remediation

• Build resiliency assuming load

spikes are the norm

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Takeaways

Handling load spikes is a mix of proactive and reactive mechanisms:
investing in both is important!

Use your existing compute resources to answer only the most
important requests. Fail quickly when overloaded.

Test. In Prod. As often as possible.

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Thank you!

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Please complete the session
survey in the mobile app

Rob Gulewich

rgulewich@netflix.com

Ryan Schroeder Joseph Lynch

rschroeder@netflix.com josephl@netflix.com

jolynch.github.io/

	Presentation
	Slide 1
	Slide 2: How Netflix handles sudden load spikes in the cloud
	Slide 3
	Slide 4: Agenda
	Slide 5: 01: Problem Load spikes at Netflix
	Slide 6: Netflix cloud topology
	Slide 7: Gradual traffic increases are the norm
	Slide 8: Load spikes are common
	Slide 9: Fast failover is a load spike
	Slide 10: Sources of unexpected traffic surges
	Slide 11: Thousands of microservices – Complex downstream call graph
	Slide 12: Thousands of microservices – Different headroom
	Slide 13: Our business is evolving
	Slide 14: 02: Capacity plan Load is often predictable
	Slide 15: Scale on a schedule
	Slide 16: Prescaling
	Slide 17: Shape on a schedule
	Slide 18: 03: Scale out of trouble Predictions are often wrong
	Slide 19: Autoscaling during steady state
	Slide 20: Autoscaling during steady state
	Slide 21: Autoscaling during load spikes
	Slide 22: Autoscaling during load spikes
	Slide 23: Components of time-to-recovery
	Slide 24: Experimentation setup
	Slide 25: Time-to-recovery dominating factors
	Slide 26: Time-to-recovery dominating factors
	Slide 27: Detection – Scaling on RPS
	Slide 28: Detection – Scaling on RPS
	Slide 29: Detection – Higher resolution metrics
	Slide 30: Time-to-recovery dominating factors
	Slide 31: Time-to-recovery dominating factors
	Slide 32: App startup has a long tail
	Slide 33: Time-to-recovery dominating factors
	Slide 34: Time-to-recovery dominating factors
	Slide 35: Start system faster – systemd-analyze
	Slide 36: Time-to-recovery dominating factors
	Slide 37: Results
	Slide 38: 04: Stay available Techniques to stay up
	Slide 39: Build shared criticality nomenclature
	Slide 40: Load begins
	Slide 41: Load grows
	Slide 42: Load sheds
	Slide 43: Congestive failure – very bad
	Slide 44: Congestive failure
	Slide 45: Stay up – Prioritized shedding
	Slide 46: Stay up – Allocate buffers
	Slide 47: Stay up – Define priority buckets
	Slide 48: Stay up – Allocate buffers
	Slide 49: Stay up – Prioritize requests
	Slide 50: Stay up – Prioritized load shedding
	Slide 51: Shed the right load
	Slide 52: Are retries a good idea?
	Slide 53: Retry sparingly
	Slide 54: Fast start full jitter
	Slide 55: More capacity is the real solution
	Slide 56: What about IO bound services?
	Slide 57: What about IO bound services?
	Slide 58: Measure latency as utilization
	Slide 59: Measure latency as utilization
	Slide 60: Stay up – Allocate IO success buffer
	Slide 61: Stay up – Add IO limiters
	Slide 62: Stay up – Add prioritized IO limiters
	Slide 63: Stay up – Add IO limiters
	Slide 64: Stay up – Prioritized shedding
	Slide 65: Fallbacks!
	Slide 66: Fallbacks!
	Slide 67: Fallback and shift
	Slide 68: Fallback and shift
	Slide 69: 05: Resilience testing Validating the techniques
	Slide 70: The resilience testing pyramid
	Slide 71: Service-level synthetic load testing
	Slide 72: Production load testing
	Slide 73: Region scale
	Slide 74: Region load testing
	Slide 75: 06: Conclusions and wrap-up
	Slide 76: Measuring success
	Slide 77: Takeaways
	Slide 78

