re:Invent DECEMBER 2 - 6, 2024 | LAS VEGAS, NV

NET403

Planet-scale networking: How AWS powers the world's largest networks

Stephen Callaghan

Senior Principal Network Engineer
Amazon Infrastructure

Jorge Vasquez

Senior Principal Software Engineer
Amazon Infrastructure

Agenda

Role of the AWS network

Design goals and principles

Deep ownership

What's next?

Continuing the series

2022

NET402

Dive deep on AWS networking infrastructure

Stephen Callaghan (he/him)
Sr. Principal Engineer

JR Rivers (he/him)
Sr. Principal Engineer
AWS

aws

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved

NET401-R

AWS journey towards intentdriven network infrastructure

Stephen Callaghan

(he/him)
Senior Principal Engineer
Amazon Infrastructure Services

aw

© 2023, Amazon Web Services, Inc. or its affiliates. All rights rese

AWS networking

Infrastructure networking	Amazon EC2 networking	Edge networking
Routers/Switches	Amazon Virtual Private Cloud (Amazon VPC)	Amazon Route 53
Copper/Optical cables	Elastic network interface	AWS Global Accelerator
Datacenters	AWS NAT gateway	Amazon CloudFront
Inter-Region backbone	Elastic Fabric Adapter (EFA)	AWS Direct Connect
Internet peering/transit	Placement groups	AWS Cloud WAN

AWS custom network hardware

Statically stable Deterministic

Highly visible Low scope of impact

Hybrid control plane

Role of the AWS network

Be so performant and reliable that we're out of the way of your workloads

Design goals

Flexible

News / AWS

June 26, 2024

Written by Prasad Kalyanaraman, VP of Infrastructure Services at AWS

Flexible

UltraCluster scale out for ultra-large models **30K TRAINIUM ACCELERATORS, 6 EXAFLOPS EC2 UltraClusters 30K Trainium Chips** FSXA Petabit nonblocking network Petabits/s throughput, billions of IOPS Trn1 ←> Trn1 ←> Trn1 On-demand access to a world-class supercomputer

Al training and inference

amazon ANTHROP\C

COMPANY NEWS

Amazon and Anthropic deepen their shared commitment to advancing generative AI

AWS

AWS can help reduce the carbon footprint of AI workloads by up to 99%. Here's how.

AW

AWS and NVIDIA extend their collaboration to advance generative AI

Al training and inference

Anthropic's Claude 3.5 Sonnet on Amazon Bedrock

AWS

Amazon Bedrock introduces Anthropic's Claude 3.5 Sonnet to customers, their most powerful AI model to date

AWS

Llama 3.2 models from Meta are now available on AWS, offering more options for building generative AI applications

AWS

Amazon Bedrock customers have more choice in AI models with Mistral Large now available

Local zones

Video streaming

ENTERTAINMENT

'Thursday Night Football' behind-thescenes: How Prime's NFL coverage comes to life

AWS

How AWS is using AI to bring Formula 1 fans closer to the race

ENTERTAINMENT

Prime Video reaches a landmark 11year streaming deal with the NBA and the WNBA

"The stack"

Subset of design goals

Security

Availability

Features

Security

PERIMETER LAYER

AWS data center physical security begins at the Perimeter Layer. This layer includes a number of security features depending on the location, such as security guards, fencing, security feeds, intrusion detection technology, and other security measures.

EXPLORE »

INFRASTRUCTURE LAYER

The Infrastructure Layer is the data center building and the equipment and systems that keep it running. Components like back-up power equipment, the HVAC system, and fire suppression equipment are all part of the Infrastructure Layer.

EXPLORE »

Internet security

AWS

How one Amazon engineer is making the internet a safer place for all of us (and cats, too)

AWS

Amazon helps the US Department of Justice thwart international cybercriminal group Anonymous Sudan

Service health

View the current and historical status of all AWS services.

View your account health

Get a personalized view of events that affect your AWS account or organization.

Open your account health

Open and recent issues (1)

AWS Health Dashboard

Service history

Consistency

SMOKEPING

Resiliency

Plan for failure

Create multiple options

Choose the best place

Resiliency example

Resiliency

Robustness

Capacity management

Capacity management

Features

Amazon introduces Graviton4

Network design principles

1. Automate as much as possible

1. Automate as much as possible

Configuration

Telemetry

Traffic engineering

1. Automate as much as possible

850 raw events per second

2.4 human engagements per hour

2. We should fail seldomly and in a predictable way

2. We should fail seldomly and in a predictable way

Image © by Mr Aquitania

3. Don't reach unprecedented scale

Photo © by Björn Strey

3. Don't reach unprecedented scale

3. Don't reach unprecedented scale

Network designs

Distributed systems designs

Design for fallible humans by using Intents (2023)

AWS journey towards intentdriven network infrastructure

Stephen Callaghan

(he/him)
Senior Principal Engineer
Amazon Infrastructure Services

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Design for fallible humans by using Intents

EC2 to internet 40X improvement

SDN journey

1. Monitoring, alarming, triangulation

2. Automation

3. Closed-loop controllers

Outbound traffic engineering

Congestion mitigation

Congestion mitigation

Link balancing

Link balancing

Performance optimization

Performance optimization

AZ independence

AZ independence

Inbound traffic engineering

Inbound traffic engineering

7X faster
mitigations for inbound congestion

Traffic engineering on the WAN

Distributed and optimal SDN

Photo © by Famartin

Distributed and optimal SDN

Example

Each link: 10ms, 75gbps

Demand-driven innovation

Purpose-built

Incremental

Ownership (And tiny plastic connectors)

The full hardware package

Racks

Amazon rack 1

Similar to outpost - AWS Expo

Standardized building blocks

Cabling

Cabling

Pre-wired positions

144-fiber trunk cables

SN to MPO connectors

Network <> Host racks

Connectors

MPO

Connectors

Telemetry

Active probing

Correlation

Remediation

PASSIVE TELEMETRY

7 billion observations per minute

ACTIVE MONITORING

>1.5B probes per minute

ACTIVE MONITORING

ACTIVE MONITORING

25B alerts per year

>1B actionable

>3M distinct events

98% fully-automated actions

2% escalated

What's next?

Space and power

AWS

AWS plans to invest \$
Mississippi, the larges
investment in the stat

Read more

SUSTAINABILITY

How Amazon is supporting farmers through solar and wind farm investments

Read more

September 18, 2024

AWS

AWS plans to invest Indiana, the largest in the state's history

Read more

Amazon signs agreements for innovative nuclear energy projects to address growing energy demands

Read more

October 16, 2024

Space and time

300,000 km per second

1 light year

= 9 quadrillion km

Latency

Single Mode Fiber

Light source

Speed of light in fiber = $3x10^8 / 1.44 = 2.08x10^8$

1m = 5ns

 $1km = 5\mu s$

Region growth

IntraAZ latency limit

Hollow core fiber

Replace silica core with air

25+ years

DARPA

Hollow core fiber

BENEFITS

Hollow core fiber

Fiber innovations

Hollow core

Multi core

Wrap up

Wrap up

Design

Ownership

Constant Improvements

Tiny plastic connectors

Future challenges

Survey

Thank you!

Please complete the session survey in the mobile app

Stephen Callaghan

Senior Principal Technologist Amazon Infrastructure **Jorge Vasquez**

Senior Principal Technologist Amazon Infrastructure

