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You don’t need to know this stuff!
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Agenda

• Quick reminder: What is Amazon Aurora DSQL?

• Writes and concurrency control

• Reads and SQL execution

• Cross-Region and scalability
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Amazon Aurora DSQL is…
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A relational SQL database 
optimized for transactional workloads.
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Scalable,
up and down.
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Serverless.
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Active-active,
and multi-Region.
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PostgreSQL compatible.
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Built on our experience.
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Rethinking transactional databases
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BEGIN;

INSERT INTO dogs VALUES (’snuffles’, 4);

INSERT INTO dogs VALUES (‘sophie’, 8);

COMMIT;
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Atomic

Consistent

Isolated

Durable
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Atomic and Durable

Journal

Awesome internal primitive 

providing atomicity and durability.
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Atomic and Durable and Isolated

JournalAdjudicator

Looks for conflicts 

between this transaction 

and other recent 

transactions.
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Atomic and Durable and Isolated and Scalable

JournalAdjudicator

Adjudicator

Distributed 

commit protocol
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BEGIN;

UPDATE dogs SET age = age + 1

   WHERE name IN (‘snuffles’, ‘max’);

COMMIT;
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BEGIN;

Find the current age of max and snuffles.

Add one.

Overwrite the old values with the new ones.

COMMIT;
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but querying from a log isn’t fun or efficient.
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Queryable

Storage
Journal

Storage provides efficient 

ways to query data.

But is not responsible for 

durability or concurrency 

control.
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Queryable and Scalable

Storage
Journal

Journal
Storage
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Queryable: Pushdown

StorageQuery processor

• Get me snuffles (K/V)

• Get me all good dogs (scan)

• Count all bad dogs (aggregate)

• Get me their ages and favorite 

treat (project)

• etc.

Saves a lot of round trips!
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BEGIN;

SELECT count(1) FROM dogs 

 WHERE state = ‘hungry’;

UPDATE food SET quantity = quantity - 2 
WHERE type = 3; 

UPDATE dogs SET state = ‘well fed’ 

 WHERE name IN (‘fido’, ‘max’);

COMMIT;
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Query processor

(from PostgreSQL)

Firecracker

Transaction and session router

Query processor

(from PostgreSQL)

Firecracker

Query processor

(from PostgreSQL)

Firecracker

Each database can have any number of these. Just keep scaling.
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Isolation of reads

Storage
Query

processor

Storage

Time 

is τ

Read at 

time τ

Read at 

time τ
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Isolation of reads: Multiversioning

Read at 

time τ = 3

t = 1 t = 2 t = 3 t = 5

Pick this one.

Storage



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Isolation of reads: The locking alternative

Storage

t = 1 t = 2 t = 3 t = 5

I read this one, so 

you can’t add any 

new Snuffles till 

I’m done.

(Read at 

time τ = 3
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Transaction and session router

Query processor

Adjudicator

Journal

Storage

Each layer scales:

• Horizontally

• Independently

• Dynamically

Based on the demands 

of your workload.
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Deep dive: Isolation
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BEGIN;   Query processor chooses τstart

SELECT …  Reads done at τstart

INSERT …  Writes spooled in QP

UPDATE …  Reads at τstart, writes in QP

COMMIT;  Check isolation rules.
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No coordination needed before 
COMMIT!
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Optimistic Concurrency Control

(aka OCC)

No locks, no coordination before commit.
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Strong Snapshot Isolation

(equivalent to PostgreSQL’s REPEATABLE READ level).
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What is Snapshot Isolation?

• Never see uncommitted data.

• Reads are repeatable.

• Reads all come from a single point in (logical) time.

• Conflicting writes are rejected (writes are not lost).

But it’s not serializable.
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START TRANSACTION;

SELECT n FROM t WHERE id IN (1, 2);

UPDATE t SET n = 2 WHERE id = 1;

COMMIT; 

START TRANSACTION;

SELECT n FROM t WHERE id IN (1, 2);

UPDATE t SET n = 2 WHERE id = 2;

COMMIT; 
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Snapshot Isolation recipe

• Perform all reads at τstart

• At commit time, choose τcommit

• The transaction can commit if (and only if) no other transaction 
has written to the same keys between τstart and τcommit

• Perform the writes at τcommit
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AdjudicatorQP

Dear Adjudicator,

Here are the keys I intend to write, and my τstart

If no other transaction has written these keys 

since τstart, pick a τcommit and write these 

changes to the Journal.

Never allow another conflicting transaction to 

pick a lower τcommit.

Your friend, the QP. 
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Snapshot Isolation
is a sweet spot.
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Deep dive: Cross-Region
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Optimize for round trips.

Data travels at 200km per ms,

or 123 miles per ms.
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BEGIN;   Query processor chooses τstart

SELECT …  Reads done at τstart

INSERT …  Writes spooled in QP

UPDATE …  Reads at τstart, writes in QP

COMMIT;  Check isolation rules.

    Make data durable.

Can happen entirely locally!

Needs cross-Region coordination.
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Coordinate once,

at commit time.
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Coordinate once,

at commit time.

Read-only transactions don’t need to coordinate at all!
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Optimize for fast failover.

Changing leadership doesn’t require moving data 
(or lock state).



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

            
      

            
      

       

      

         

              

      

      

         

      

        

               

                        



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

            

      

            

      

       

      

         

              

      

      

         

      

        

               

                        



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

            

      

            

      

       

      

         

              

      

      

         

      

        

               

                        

• Read path: no change

• Adjudicators: 

move into healthy regions

• Journals:

majority already in healthy regions

• No data loss, no availability loss
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Implementation quality
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Rust.
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Deterministic 
simulation testing.
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Fuzzing.
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Formal methods.



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Runtime 
monitoring.
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Thank you!
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Please complete the session 
survey in the mobile app

Marc Brooker

mbrooker@amazon.com

@marcjbrooker

mailto:mbrooker@amazon.com
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