
© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Deep dive into Amazon Aurora
DSQL and its architecture

Marc Brooker

D A T 4 2 7 - N E W

VP/Distinguished Engineer

Amazon Web Services

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

You don’t need to know this stuff!

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Agenda

• Quick reminder: What is Amazon Aurora DSQL?

• Writes and concurrency control

• Reads and SQL execution

• Cross-Region and scalability

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Amazon Aurora DSQL is…

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

A relational SQL database
optimized for transactional workloads.

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Scalable,
up and down.

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Serverless.

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Active-active,
and multi-Region.

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

PostgreSQL compatible.

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Built on our experience.

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Rethinking transactional databases

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

BEGIN;

INSERT INTO dogs VALUES (’snuffles’, 4);

INSERT INTO dogs VALUES (‘sophie’, 8);

COMMIT;

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Atomic

Consistent

Isolated

Durable

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Atomic and Durable

Journal

Awesome internal primitive

providing atomicity and durability.

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Atomic and Durable and Isolated

JournalAdjudicator

Looks for conflicts

between this transaction

and other recent

transactions.

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Atomic and Durable and Isolated and Scalable

JournalAdjudicator

Adjudicator

Distributed

commit protocol

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

BEGIN;

UPDATE dogs SET age = age + 1

 WHERE name IN (‘snuffles’, ‘max’);

COMMIT;

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

BEGIN;

Find the current age of max and snuffles.

Add one.

Overwrite the old values with the new ones.

COMMIT;

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

but querying from a log isn’t fun or efficient.

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Queryable

Storage
Journal

Storage provides efficient

ways to query data.

But is not responsible for

durability or concurrency

control.

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Queryable and Scalable

Storage
Journal

Journal
Storage

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Queryable: Pushdown

StorageQuery processor

• Get me snuffles (K/V)

• Get me all good dogs (scan)

• Count all bad dogs (aggregate)

• Get me their ages and favorite

treat (project)

• etc.

Saves a lot of round trips!

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

BEGIN;

SELECT count(1) FROM dogs

 WHERE state = ‘hungry’;

UPDATE food SET quantity = quantity - 2
WHERE type = 3;

UPDATE dogs SET state = ‘well fed’

 WHERE name IN (‘fido’, ‘max’);

COMMIT;

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Query processor

(from PostgreSQL)

Firecracker

Transaction and session router

Query processor

(from PostgreSQL)

Firecracker

Query processor

(from PostgreSQL)

Firecracker

Each database can have any number of these. Just keep scaling.

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Isolation of reads

Storage
Query

processor

Storage

Time

is τ

Read at

time τ

Read at

time τ

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Isolation of reads: Multiversioning

Read at

time τ = 3

t = 1 t = 2 t = 3 t = 5

Pick this one.

Storage

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Isolation of reads: The locking alternative

Storage

t = 1 t = 2 t = 3 t = 5

I read this one, so

you can’t add any

new Snuffles till

I’m done.

(Read at

time τ = 3

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Transaction and session router

Query processor

Adjudicator

Journal

Storage

Each layer scales:

• Horizontally

• Independently

• Dynamically

Based on the demands

of your workload.

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Deep dive: Isolation

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

BEGIN; Query processor chooses τstart

SELECT … Reads done at τstart

INSERT … Writes spooled in QP

UPDATE … Reads at τstart, writes in QP

COMMIT; Check isolation rules.

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

No coordination needed before
COMMIT!

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Optimistic Concurrency Control

(aka OCC)

No locks, no coordination before commit.

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Strong Snapshot Isolation

(equivalent to PostgreSQL’s REPEATABLE READ level).

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What is Snapshot Isolation?

• Never see uncommitted data.

• Reads are repeatable.

• Reads all come from a single point in (logical) time.

• Conflicting writes are rejected (writes are not lost).

But it’s not serializable.

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

START TRANSACTION;

SELECT n FROM t WHERE id IN (1, 2);

UPDATE t SET n = 2 WHERE id = 1;

COMMIT;

START TRANSACTION;

SELECT n FROM t WHERE id IN (1, 2);

UPDATE t SET n = 2 WHERE id = 2;

COMMIT;

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Snapshot Isolation recipe

• Perform all reads at τstart

• At commit time, choose τcommit

• The transaction can commit if (and only if) no other transaction
has written to the same keys between τstart and τcommit

• Perform the writes at τcommit

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

AdjudicatorQP

Dear Adjudicator,

Here are the keys I intend to write, and my τstart

If no other transaction has written these keys

since τstart, pick a τcommit and write these

changes to the Journal.

Never allow another conflicting transaction to

pick a lower τcommit.

Your friend, the QP.

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Snapshot Isolation
is a sweet spot.

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Deep dive: Cross-Region

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Optimize for round trips.

Data travels at 200km per ms,

or 123 miles per ms.

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

BEGIN; Query processor chooses τstart

SELECT … Reads done at τstart

INSERT … Writes spooled in QP

UPDATE … Reads at τstart, writes in QP

COMMIT; Check isolation rules.

 Make data durable.

Can happen entirely locally!

Needs cross-Region coordination.

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Coordinate once,

at commit time.

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Coordinate once,

at commit time.

Read-only transactions don’t need to coordinate at all!

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Optimize for fast failover.

Changing leadership doesn’t require moving data
(or lock state).

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

• Read path: no change

• Adjudicators:

move into healthy regions

• Journals:

majority already in healthy regions

• No data loss, no availability loss

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Implementation quality

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Rust.

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Deterministic
simulation testing.

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Fuzzing.

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Formal methods.

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Runtime
monitoring.

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Thank you!

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Please complete the session
survey in the mobile app

Marc Brooker

mbrooker@amazon.com

@marcjbrooker

mailto:mbrooker@amazon.com

	Slide 1
	Slide 2: Deep dive into Amazon Aurora DSQL and its architecture
	Slide 3: You don’t need to know this stuff!
	Slide 4: Agenda
	Slide 5: Amazon Aurora DSQL is…
	Slide 6: A relational SQL database optimized for transactional workloads.
	Slide 7: Scalable, up and down.
	Slide 8: Serverless.
	Slide 9: Active-active, and multi-Region.
	Slide 10: PostgreSQL compatible.
	Slide 11: Built on our experience.
	Slide 12: Rethinking transactional databases
	Slide 13
	Slide 14
	Slide 15
	Slide 16: Atomic and Durable
	Slide 17: Atomic and Durable and Isolated
	Slide 18: Atomic and Durable and Isolated and Scalable
	Slide 19
	Slide 20
	Slide 21
	Slide 22: Queryable
	Slide 23: Queryable and Scalable
	Slide 24: Queryable: Pushdown
	Slide 25
	Slide 26
	Slide 27: Isolation of reads
	Slide 28: Isolation of reads: Multiversioning
	Slide 29: Isolation of reads: The locking alternative
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34: Deep dive: Isolation
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39: What is Snapshot Isolation?
	Slide 40
	Slide 41: Snapshot Isolation recipe
	Slide 42
	Slide 43
	Slide 44: Deep dive: Cross-Region
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53: Implementation quality
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

