
© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Best practices for querying
vector data for gen AI apps in
PostgreSQL

Jonathan Katz

D A T 4 2 3

(he/him)

Principal Product Manager – Technical

AWS

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Agenda

01 Overview of generative AI and the role of databases

02 PostgreSQL as a vector store

03 pgvector strategies and best practices

04 Amazon Aurora features for vector search

05 Looking ahead: pgvector roadmap

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Overview of generative AI and
the role of databases

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

CUSTOMER

Is it possible to exchange the

shoes I bought for blue ones?

Human: You are an agent who manages orders and returns on an online retail website. Given a set of APIs, Conversation History, and U

Input, create an orchestration plan for executing the set of APIs in order to fulfill user input.

Tags

Emphasis

(capitalized)

DO NOT go into a loop and return exact same apis with exact same api_input as previous observation
Convergence

criteria

Provide only ONE action per $JSON_BLOB, as shown:

{ "api": $API_NAME, "verb": $HTTP_VERB, "api_input": { $PARAMETER: {"value": $INPUT, "source": $SOURCE} } }

Format

(JSON)

Conversation History: Below is the history of the conversation between Human and AI and the apis predicted and executed for that
History

format

1

2

3

4

5

DEVELOPER CREATED AGENT

Of course, do you have your order

number?

Valid "api" values are GetOrderHistory::GetProductCatalogue, GetProductAvailability::UpdateOrder, human::human or "Cannot Ans

- DO NOT return an api if all required parameter values are not present.

- DO NOT replace the placeholders in the api_name with api_inputs.

- Return available parameters in api_inputs ONLY.

Valid "verb" is HTTP verb used in "APIs" e.g. GET, PUT etc

Valid "api_input" as json from "User Input", "Observation" or "Conversation History".

- NEVER assume value for any parameter, mark the value as "null" if not available.

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Retrieval Augmented
Generation (RAG)

Configure foundation model
to interact with your data

A N S W E RQ U E S T I O N

K N O W L E D G E
B A S E S

F O U N D A T I O N
M O D E L

How much do these blue

shoes cost?

Product catalog

Price data

Those blue shoes cost

$59.99

Sorry, I don't know

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What are vector embeddings?

Source
domain-

specific data
Tokenization Vectorization

Store in vector
data store

Perform
semantic
similarity

search

Include
semantically

similar context
in prompt

Embeddings: When vector elements are semantic, used in generative AI

Documents

Audio/video

Images

Semantic elements:

• Words, phrases

• Paragraphs, documents

• Scenes, song sections

• Faces, detected

picture elements

• And more

0.35 0.1 0 0.9 001.0 00 0001.0 0 0…

0.35 0.1 0 0.8 001.0 00 0001.0 0 0…

0.15 0.1 0 0.7 001.0 00 0001.0 0 0…

3D simplified representation. Embeddings can

have thousands of dimensions. Source:

https://daleonai.com/embeddings-explained

https://daleonai.com/embeddings-explained

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

How vector embeddings are used

Document

chunks

Amazon Titan

Embeddings
PDF

document

Amazon Aurora

PostgreSQL-

Compatible

Edition (pgvector)

User

Embeddings Amazon

Bedrock FM

1

4

Question

Question + context

Response

2 3

5

6

7

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Challenges with vectors

• Time to generate embeddings

• Embedding size

• Compression

• Query time

Blue elephant vase

that can hold up to

three plants in it,

hand painted…

0.1234

0.1231

0.1232

0.9005

0.2489

1536 dimensions

4-byte floats

6152B => 6KiB

0.12310

0.24234

0.59405

0.23430

0.23432

0.20551

0.70543

0.20559

0.20559

0.70543

0.23432

0.24234

0.23430

0.12310

0.20551

0.59405

1,000,000 => 5.7GB

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Approximate nearest neighbor (ANN)

• Find similar vectors without
searching all of them

• Faster than exact nearest
neighbor

• “Recall” – % of expected results

Recall: 80%

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Criteria that impact selection of vector storage

• Cost

• Choice of embedding / foundation model

• Ease of development

• Query performance targets

• Data ingestion patterns

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Metrics for evaluating a vector storage system

Recall

Build time

Size
Index

Throughput (QPS)

Latency (p99)

Single client

Peak throughput

Query

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What impacts vector storage performance metrics?

• Choice of embedding model

• Number of vector dimensions

• Choice of indexing algorithm

• Query patterns (full search, filtering, hybrid search)

• Quantization

• Ingestion / modification patterns

• Infrastructure resources/utilization

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Enabling
vector search

across our services

Amazon

DocumentDB

Amazon Neptune

Amazon DynamoDB

via zero-ETL

Amazon MemoryDB

Amazon

OpenSearch Service

Amazon RDS for PostgreSQL

Amazon

OpenSearch Serverless

Amazon Aurora

PostgreSQL-Compatible

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

PostgreSQL as a vector store

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Why PostgreSQL?
Open source

• Active development for more than 35 years

• Controlled by a community, not a single
company

Performance and scale

• Robust data type implementations

• Extensive indexing support

• Parallel processing for complex queries

• Native partitioning for large tables

PostgreSQL is a trademark or registered trademark of the PostgreSQL

Community Association of Canada, and used with their permission.

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Why use PostgreSQL for vector searches?

• Existing client libraries work without modification

▪ May require an upgrade

• Convenient to co-locate app + AI/ML data in same database

• Interfacing with PostgreSQL storage gives ACID transactional storage

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Why care about ACID for vectors?

• Atomicity: “All or nothing” stored in transaction (bulk loads)

• Consistency: Follows rules for other data stored in database

• Isolation: Correctness in returned results; committed transactions
“immediately available”

• Durability: Once committed, vectors are safely stored

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What is pgvector?

Adds support for storage, indexing, searching, metadata with choice of distance

vector data type

Supports HNSW & IVFFlat indexing, with

options for scalar and binary quantization
Distance operations include
Cosine, Euclidean/L2, Manhattan/L1,

Dot product, Hamming, Jaccard

Exact nearest neighbor (K-NN)

Approximate nearest neighbor (ANN)

Co-locate with embeddings

github.com/pgvector/pgvector

https://github.com/pgvector/pgvector

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

2023

Vector searches in PostgreSQL

“It was there”

Can use existing PostgreSQL drivers

Open source

C-based

2024

High-performance vector searches

Support for larger vectors

Sustained, rapid improvements

Better support in developer tools

Why pgvector?

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

pgvector: Year-in-review timeline

• v0.4.x (1/2023 – 6/2023)

▪ Improved IVFFlat cost estimation

▪ Store higher dimensional vectors

• v0.5.x (8/2023 – 10/2023)

▪ Add HNSW index + distance function
performance improvements

▪ Parallel IVFFlat builds

• v0.6.x (1/2024 – 3/2024)

▪ Parallel HNSW index builds + in-
memory build optimizations

• v0.7.x (4/2024 – 9/2024)

▪ halfvec (2-byte float), bit(n) index
support, sparsevec (up to 1B dim)

▪ Quantization (scalar/binary),
Jaccard/Hamming distance, explicit
SIMD

• v0.8.x (10/2024)

▪ Iterative index scans

▪ HNSW search memory reduction /
insert speedups

▪ Improved HNSW cost estimation

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Indexing methods: IVFFlat and HNSW

• IVFFlat

▪ K-means based

▪ Organize vectors into lists

▪ Requires prepopulated data

▪ Insert time bounded by # lists

• HNSW

▪ Graph based

▪ Organize vectors into
“neighborhoods”

▪ Iterative insertions

▪ Insertion time increases as data in
graph increases

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Which search method do I choose?

• Exact nearest neighbors: No index

• Fast indexing: IVFFlat*

• Easy to manage: HNSW

• High performance/recall: HNSW

• Filtering: Depends on your selectivity

▪ High selectivity (most results filtered out): B-tree / GIN / GiST / BRIN / no index

▪ Low selectivity: HNSW (+ iterative scan)

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

pgvector strategies and
best practices

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Best practices for pgvector

01 Storage configuration

02 HNSW build and search parameters

03 Filtering

04 Quantization

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Best practices:
Storage configuration

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

How does PostgreSQL store vectors?

• Page: PostgreSQL atomic storage unit

▪ 8192 bytes = 8K = 8KiB

• Vector indexes have “wasted space”

▪ 1,536-dim vector (6 KiB) has 2KiB “empty space”

(1,[1,2,3]),(2,[2,3,4]),(3,[3,4

,5]),(4,[4,5,6]),(5,[5,6,7]),(6,

[6,7,8]),(7,[7,8,9]),(8,[8,9,1

0]),(9,[9,10,11]),(10,[10,11,

12]),(11,[11,12,13]),(12,[12

,13,14]),(13,[13,14,15]),(14

,[14,15,16]),(15,[15,16,17])

,(16,[16,17,18]),(17,[17,18,

19]),(18,[18,19,20]),(19,[19

,20,21])

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

How vector size impacts space utilization

Dimensions Vectors / page Wasted space (B)

128 15 308

256 7 916

384 5 428

512 3 1,988

768 2 2,000

1,024 1 4,060

1,536 1 2,012

2,000 1 156

PAGE_SIZE – PAGE_HEADER – (VECTORS * 4) – VECTORS * (4 * DIMS + 8)

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Vectors and page sizes

• Heap (table) pages are resizable as a compile time
flag

• Index pages are not resizable

• This is a real () problem for vectors

▪ 1536-dim 4-byte vector = 6KiB

▪ 3072-dim 4-byte vector = 12KiB

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

 TOAST – handling larger data

• TOAST (The Oversized-Attribute Storage Technique) is a mechanism
for storing data larger than 8KB

▪ By default, PostgreSQL “TOASTs” values over 2KB (510d 4-byte float)

• Storage types:

▪ PLAIN: Data stored inline with table

▪ EXTERNAL: Data stored in TOAST table when threshold exceeded

– pgvector default 0.6.0+

▪ EXTENDED: Data stored/compressed in TOAST table when threshold exceeded

– pgvector default before 0.6.0

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Visualizing TOAST for pgvector

12,"jkatz",[0.3213,0.

12321,0.12312,0.12

321,0.12321,0.1232

1,0.1123123,0.1232

1,0.12321,0.1232,0.

12312,0.12321,0.12

321,0.12312]

PLAIN

12,"jkatz",12345678 [0.3213,0.12321,0.1

2312,0.12321,0.123

21,0.12321,0.11231

23,0.12321,0.12321

,0.1232,0.12312,0.1

2321,0.12321,0.123

12]

EXTENDED / EXTERNAL

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Impact of TOAST on vector data

• Traditionally, TOAST data is not on the “hot path”

• Impacts query plan and maintenance operations

• Compression is ineffective

• Unable to use for index pages

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

How storage selection impacts QPS

5,000 cosine distance operations (<=>) – single connection (r7i.16xlarge)

PLAIN EXTERNAL

Dimensions p50 (ms) QPS p50 (ms) QPS

128 1.2 863 1.2 814

256 1.5 655 1.5 658

384 1.7 591 1.7 587

512 2.0 491 9.8 102

768 2.4 410 10.7 93

1,024 3.5 288 12.0 83

1,536 4.1 246 16.2 62

SELECT $1 <=> embedding AS distance FROM embeddings ORDER BY distance LIMIT 5000;

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Impact of TOAST on pgvector queries

Limit (cost=772135.51..772136.73 rows=10 width=12)

-> Gather Merge (cost=772135.51..1991670.17 rows=10000002 width=12)

 Workers Planned: 6

 -> Sort (cost=771135.42..775302.08 rows=1666667 width=12)

 Sort Key: ((<-> embedding))

 -> Parallel Seq Scan on vecs128 (cost=0.00..735119.34 rows=1666667
width=12)

128 dimensions

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Impact of TOAST on pgvector queries

Limit (cost=149970.15..149971.34 rows=10 width=12)

-> Gather Merge (cost=149970.15..1347330.44 rows=10000116 width=12)

 Workers Planned: 4

 -> Sort (cost=148970.09..155220.16 rows=2500029 width=12)

 Sort Key: (($1 <-> embedding))

 -> Parallel Seq Scan on vecs1536 (cost=0.00..94945.36 rows=2500029
width=12)

1,536 dimensions

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Parallel worker underestimation

12,"jkatz",[0.3213,0.

12321,0.12312,0.12

321,0.12321,0.1232

1,0.1123123,0.1232

1,0.12321,0.1232,0.

12312,0.12321,0.12

321,0.12312]

PLAIN

12,"jkatz",12345678 [0.3213,0.12321,0.1

2312,0.12321,0.123

21,0.12321,0.11231

23,0.12321,0.12321

,0.1232,0.12312,0.1

2321,0.12321,0.123

12]

TOAST

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Impact of TOAST on pgvector queries

Limit (cost=95704.33..95705.58 rows=10 width=12)

-> Gather Merge (cost=95704.33..1352239.13 rows=10000111 width=12)

 Workers Planned: 11

 -> Sort (cost=94704.11..96976.86 rows=909101 width=12)

 Sort Key: (($1 <-> embedding))

 -> Parallel Seq Scan on vecs1536 (cost=0.00..75058.77 rows=909101 width=12)

1,536 dimensions

SET min_parallel_table_scan_size TO 1

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Strategies for pgvector and TOAST

• Use PLAIN storage

▪ ALTER TABLE ... ALTER COLUMN ... SET STORAGE PLAIN

▪ Requires table rewrite (VACUUM FULL) if data already exists

▪ Limits vector sizes to 2,000 dimensions

• Use min_parallel_table_scan_size to induce more parallel
workers

• TOAST is currently not available for indexes

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Best practices: HNSW build and
storage parameters

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

HNSW index building parameters

m

Maximum number of bidirectional links between indexed vectors

Default: 16

ef_construction

Number of vectors to maintain in “nearest neighbor” list

Default: 64

Recommendation: 64 or 256*

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

HNSW query parameters

hnsw.ef_search

• Number of vectors to maintain in “nearest neighbor” list

• Before v0.8, must be greater than or equal to LIMIT

• v0.8+, can use hnsw.iterative_search to satisfy unmet LIMIT

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Querying an HNSW index

Layer 2

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Querying an HNSW index

Layer 2

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Querying an HNSW index

Layer 1

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Querying an HNSW index

Layer 1

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Querying an HNSW index

Layer 0

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Querying an HNSW index

Layer 0

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What happens internally searching a HNSW index?

• Maintain a list of visited

• Maintain an ordered list of candidates with
distances

• ef_search is 1 at Layer 1+

• ef_search is ef_search (default 40) at Layer
0

Visited

0x0102030405060708

0x0102030405060709

0x0102030405060710

Candidates

0x0102030405060708 0.0123

0x0102030405060709 0.0434

0x0102030405060710 0.0845

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

HNSW entry level distribution

m Layer 1 Entry Level Layer 0 Entry Level

2 25% 50%

4 19% 75%

8 11% 87%

12 8% 92%

16 6% 94%

20 5% 95%

24 4% 96%

32 3% 97%

36 3% 97%

48 2% 98%

64 2% 98%

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

How “m” impacts query time via vectors compared

m=16, ef_construction=64

vectors compared

ef SIFT (N=1M) GIST (N=1M) GLoVE25 (N=1.1M) 1536d (N=5M) 768d (N=10M)

10 427 512 438 456 498

20 643 779 652 650 695

40 1044 1272 1049 1005 1050

80 1774 2212 1761 1629 1762

120 2438 3099 2420 2214 2449

200 3638 4755 3629 3328 3833

400 6247 8402 6303 5836 7190

800 10619 14706 10938 10563 13258

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

How “m” impacts query time via vectors compared

ef

1536

(N=5M,m=16)

1536d

(N=5M,m=64)

768d

(N=10M,m=16)

768d

(N=10M,m=64)

10 456 605 498 1425

20 650 1257 695 2038

40 1005 2292 1050 3246

80 1629 4049 1762 5691

120 2214 5728 2449 8046

200 3328 8601 3833 12664

400 5836 15158 7190 23284

800 10563 27249 13258 42200

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Why index build speed matters (serial build)

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0

50

100

150

200

250

1 2 3 4 5

R
e

ca
ll

In
d

e
x
 b

u
il

d

(m
in

)

hnsw.ef_construction

990K 1536-dim vectors, m=16, hnsw.ef_search=20

Series1 Series2

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

 0.800

 0.820

 0.840

 0.860

 0.880

 0.900

 0.920

 0.940

 -

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5

R
e

ca
ll

In
d

e
x
 b

u
il

d
 (

m
in

)

hnsw.ef_construction

990K 1536-dim vectors, m=16, hnsw.ef_search=20,

max_maintenance_workers=63

Build Time Recall

Why index build speed matters (parallel build)

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

How hnsw.ef_construction impacts query performance

 0.500

 0.520

 0.540

 0.560

 0.580

 0.600

 0.620

 0.640

 0.660

 0.680

 750

 760

 770

 780

 790

 800

 810

 820

 830

 840

 850

 1 2 3 4 5

R
e

ca
ll

Q
u

e
ri

e
s

/
 s

e
co

n
d

 (
Q

P
S

)

hnsw.ef_construction

GIST960 1M 960-dim vectors, m=16, hnsw.ef_search=20

QPS Recall

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

How “m” impacts index build time & search quality

 -

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1.0

 -

 1

 2

 3

 4

 5

 6

 7

 8

 9

 1 2 3 4 5 6 7 8

R
e
ca

ll

In
d

e
x
 b

u
il

d
 (

m
in

)

m

GIST960 1M 960-dim vectors, ef_construction=256,

hnsw.ef_search=20

Build time (min) Recall

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Choosing a data ingestion method

• How you're ingesting vectors dictates methodology

▪ Bulk load vectors, then build index

▪ Iteratively add vectors to index

• Loading technique impacts write performance

▪ Single vs. bulk inserts

▪ INSERT vs. COPY vs. COPY BINARY

• Parallel index builds vs. concurrent inserts

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Comparison of ingestion methods – no index

 -

 5

 10

 15

 20

 25

 30

1 2 3 4 5 6 7

T
im

e
 (

m
in

)

1,000,000 1,536-dim vectors (r7i.16xlarge)

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Ingestion with COPY

Binary Text Driver PostgreSQL Binary

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Ingestion with COPY BINARY

Binary Driver PostgreSQL

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Vector ingestion and concurrency – no index

 -

 200

 400

 600

 800

 1,000

 1,200

 1,400

 1,600

1 2 3 4 5 6

T
im

e
 (

s)

Clients

1,000,000 1,536-dim vectors (r7i.16xlarge)

Series1 Series2 Series3 Series4

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Parallel index build vs. concurrent inserts

 -

 100

 200

 300

 400

 500

 600

 700

1 2

T
im

e
 (

s)

Clients / workers

1,000,000 1,536-dim vectors (r7i.16xlarge)

HNSW (m=16, ef_construction=64)

Series1 Series2 Series3 Series4 Series5

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Best practices for building HNSW indexes

Start with the defaults (m=16, ef_construction=64)

 Better recall: ef_construction up to 256

Use PLAIN storage to maximize performance

Ingestion

 Full table: parallel build (max_parallel_maintenance_workers)

 Iterative inserts: Bulk INSERT / COPY BINARY

Quantization can help reduce storage

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Best practices: Quantization

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What is quantization?

[0.0435122, -0.2304432, -0.4521324,
 0.98652234, -0.1123234, 0.75401234]

Flat

[0.0432, -0.234, -0.452, 0.986,
-0.112, 0.751]

Scalar quantization (2-byte float)

[1, 0, 0, 1, 0, 1]

Binary quantization

[129, 99, 67, 244, 126, 230]

Scalar quantization (1-byte uint)

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

pgvector and scalar quantization (2 byte)

CREATE INDEX ON documents USING

 hnsw((embedding::halfvec(3072)) halfvec_cosine_ops);

SELECT id

FROM documents

ORDER BY embedding::halfvec(3072) <=> $1::halfvec(3072)

LIMIT 10;

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

pgvector and binary quantization

CREATE INDEX ON documents USING

 hnsw ((binary_quantize(embedding)::bit(3072)) bit_hamming_ops);

SELECT i.id FROM (

 SELECT id, embedding <=> $1 AS distance

 FROM items

 ORDER BY

 binary_quantize(embedding)::bit(3072) <~> binary_quantize($1)

 LIMIT 40 -- set to hnsw.ef_search

) i

ORDER BY i.distance

LIMIT 10;

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

1536d 5MM (r7i.16xlarge, m=16, ef_construction=256)

Flat 2-byte float Binary (rerank)

Index Size (GB) 38.15 19.07 2.34

Index build time (min) 21 13 4

Recall @ ef_search = 40 0.931 0.929 0.811

QPS @ ef_search = 40 24,216 27,084 33,984

Recall @ ef_search = 80 0.965 0.961 0.900

QPS @ ef_search = 80 11,057 12,759 20,410

Recall @ ef_search = 220 0.989 0.983 0.963

QPS @ ef_search = 220 5,242 5,983 7,856

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

1536d 5MM (r7i.16xlarge, m=16, ef_construction=256)

Flat 2-byte float Binary (rerank)

Index Size (GB) 38.15 19.07 2.34

Index build time (min) 21 13 4

Recall @ ef_search = 40 0.931 0.929 0.811

QPS @ ef_search = 40 24,216 27,084 33,984

Recall @ ef_search = 80 0.965 0.961 0.900

QPS @ ef_search = 80 11,057 12,759 20,410

Recall @ ef_search = 220 0.989 0.983 0.963

QPS @ ef_search = 220 5,242 5,983 7,856

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

1536d 5MM (r7i.16xlarge, m=16, ef_construction=256)

Flat 2-byte float Binary (rerank)

Index Size (GB) 38.15 19.07 2.34

Index build time (min) 21 13 4

Recall @ ef_search = 40 0.931 0.929 0.811

QPS @ ef_search = 40 24,216 27,084 33,984

Recall @ ef_search = 80 0.965 0.961 0.900

QPS @ ef_search = 80 11,057 12,759 20,410

Recall @ ef_search = 220 0.989 0.983 0.963

QPS @ ef_search = 220 5,242 5,983 7,856

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

1536d 5MM (r7i.16xlarge, m=16, ef_construction=256)

Flat 2-byte float Binary (rerank)

Index Size (GB) 38.15 19.07 2.34

Index build time (min) 21 13 4

Recall @ ef_search = 40 0.931 0.929 0.811

QPS @ ef_search = 40 24,216 27,084 33,984

Recall @ ef_search = 80 0.965 0.961 0.900

QPS @ ef_search = 80 11,057 12,759 20,410

Recall @ ef_search = 220 0.989 0.983 0.963

QPS @ ef_search = 220 5,242 5,983 7,856

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Best practices for quantization

• Quantizing can reduce space, but may lose information

▪ Consult your data science team if this is an acceptable tradeoff

• Binary quantization is best for vectors with many bits (“bit diversity”)

• Recall decreases as you store more vectors

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Best practices: Filtering

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What is filtering?

SELECT id

FROM products

WHERE products.category_id = 7

ORDER BY $1 <=> products.embedding

LIMIT 10;

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

How filtering impacts ANN queries

• PostgreSQL may choose not to use an ANN index

• PostgreSQL uses an ANN index, but doesn't return enough results

• Filtering occurs after using the index

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Considerations for filtering strategy

• Query patterns: Distribution of filtered vs. unfiltered queries

• Selectivity: how many rows do your filters remove?

▪ High selectivity: removes "most" rows

• # of vector distance comparisons per query

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Remember: Speed of 5,000 distance operations

5,000 cosine distance operations (<=>) – single connection (r7i.16xlarge)

PLAIN EXTERNAL

Dimensions p50 (ms) QPS p50 (ms) QPS

128 1.2 863 1.2 814

256 1.5 655 1.5 658

384 1.7 591 1.7 587

512 2.0 491 9.8 102

768 2.4 410 10.7 93

1,024 3.5 288 12.0 83

1,536 4.1 246 16.2 62

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Pre-v0.8.0 filtering strategies

Partial indexing

CREATE INDEX ON docs

 USING hnsw(

 embedding vector_l2_ops)

 WHERE category_id = 7;

Partitioning
CREATE TABLE docs_cat7

 PARTITION OF docs

 FOR VALUES IN (7);

CREATE INDEX ON docs_cat7

 USING hnsw(embedding vector_l2_ops);

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

pgvector v0.8.0+ changes for filtering

• HNSW cost estimation provide more options for query planner

▪ Alternative index selection / sequential scan

• Iterative scans: keep scanning index LIMIT satisfied /
hnsw.max_scan_tuples reached

▪ Helps "overfiltering" problem

▪ hnsw.iterative_scan:

– relaxed_order (better recall)

– strict_order (no reordering required)

– off (default)

▪ hnsw.max_scan_tuples (default: 20,000)

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Example: Index strategy when using filters

No iterative scan (ef_search=40)

Selectivity QPS

Rows

returned

(avg)

10% 485 3.98

1% 486 0.40

0.1% 485 0.04

0.01% 451 0.00

CREATE TABLE embeddings (

 filter_10 int,

 filter_1 int,

 filter_01 int,

 filter_001 int,

 embedding vector (512)

);

CREATE INDEX ON embeddings USING

 hnsw (embedding vector_cosine_ops);

r7i.16xlarge, 5,000,000 512-dim vectors, k=10, single connection

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Example: Index strategy when using filters

r7i.16xlarge, 5,000,000 512-dim vectors, k=10, single connection

No iterative scan (ef_search=40)

No iterative scan

(ef_search=1000)

Selectivity QPS

Rows

returned

(avg) Selectivity QPS

Rows

returned

(avg)

10% 485 3.98 10% 27 10.00

1% 486 0.40 1% 26 8.77

0.1% 485 0.04 0.1% 25 1.00

0.01% 451 0.00 0.01% 25 0.10

SELECT $1 <=> embedding AS distance FROM embeddings
WHERE filter_10 = $2
ORDER BY distance LIMIT 10

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Example: Index strategy when using filters

r7i.16xlarge, 5,000,000 512-dim vectors, k=10, single connection

No iterative scan

(ef_search=1000)

Iterative scan (ef_search=40,

iterative_scan=relaxed_order,

max_tuples_scanned=20000)

Selectivity QPS

Rows returned

(avg) QPS

Rows returned

(avg)

10% 27 10.00 196 10.00

1% 26 8.77 37 10.00

0.1% 25 1.00 26 9.99

0.01% 25 0.10 16 2.06

SET hnsw.iterative_scan TO relaxed_order;
SET hnsw.max_tuples_scanned TO 20000;

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Example: Index strategy when using filters

r7i.16xlarge, 5,000,000 512-dim vectors, k=10, single connection

CREATE INDEX ON embeddings (filter_10);

Iterative scan (ef_search=40,

iterative_scan=relaxed_order,

max_tuples_scanned=20000) B-tree

Selectivity QPS

Rows returned

(avg) QPS

Rows returned

(avg)

10% 196 10.00 1 10.00

1% 37 10.00 12 10.00

0.1% 26 9.99 125 9.88

0.01% 16 2.06 900 10.00

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Example: Index strategy when using filters

r7i.16xlarge, 5,000,000 512-dim vectors, k=10, single connection

CREATE INDEX ON embeddings (filter_10, filter_01);

ALTER TABLE embeddings ADD COLUMN filters;
UPDATE embeddings SET filters = jsonb_build_object('filter_10', filter_10, ...);
CREATE INDEX ON embeddings USING gin(filters jsonb_path_ops);

Iterative scan

(relaxed_order) B-tree (multicolumn) GIN (JSONB)

Selectivity QPS

Rows

returned

(avg) QPS

Rows

returned

(avg) QPS

Rows

returned

(avg)

10% + 1% 20 9.99 114 10.00 26 10.00

10% + 0.1% 16 2.08 1,138 10.00 162 10.00

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Example: Index strategy when using filters

r7i.16xlarge, 5,000,000 512-dim vectors, k=10, single connection

Index size (GB) x smaller
HNSW 12.72 -
B-tree 0.03 424x
B-tree

(multicolumn) 0.03 424x
GIN 0.07 181x

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Best practices for filtering

• When possible, avoid using an ANN index (HNSW / IVFFlat)

▪ B-tree: Known, fixed set of filters

▪ GIN: Store filters in JSONB

▪ Other indexes for specialized data types (GiST, BRIN)

• If mix of selectivity, use both ANN and non-ANN indexes

• Partitioning / partial indexes can segment data with low selectivity

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Amazon Aurora features for

vector search

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Amazon Aurora
Designed for unparalleled high performance and availability at global scale with full MySQL and PostgreSQL
compatibility at 1/10th the cost of commercial databases

▪ 5x throughput of standard MySQL

and 3x of standard PostgreSQL

▪ Scale out up to 15 read replicas

▪ Decoupled storage and compute

enabling cost optimization

▪ Fast database cloning

▪ Distributed, dynamically scaling

storage subsystem

Performance &

scalability

▪ 99.99% availability with multi-AZ

▪ Data is durable across 3 AZs

(customers only pay for 1 copy)

▪ Automatic, continuous,

incremental backups with point-

in-time recovery (PITR)

▪ Failovers in < 10 seconds

▪ Fault-tolerant, self-healing, auto-

scaling storage

▪ Global database for disaster

recovery

Availability &

durability

▪ Network isolation

▪ Encryption at rest/in transit

▪ Supports multiple secure

authentication mechanisms and

audit controls

Highly secure

▪ Automates time-consuming

management of administration

tasks like hardware provisioning,

database setup, patching, and

backups

▪ Serverless configuration options

Fully managed

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Amazon Aurora features for vector workloads
• Aurora PostgreSQL-Compatible with Optimized Reads

▪ NVMe caching

• Higher memory instances (r7g / r7i)

• Amazon Aurora PostgreSQL Limitless Database: automated horizontal scaling

• Aurora as an Amazon Bedrock knowledge base

• AuroraML: Generate embeddings directly from Aurora

• Compatibility with frameworks like LangChain and LlamaIndex

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Scale further with Aurora Optimized Reads

Amazon Aurora Optimized

Reads and pgvector increase

queries per second for vector

search by up to 9x in workloads

that exceed available instance

memory

1 2 3 4 5 6 7 8

Q
u

e
ri

e
s

p
e

r
se

co
n

d
 (

Q
P

S
)

Clients

1 billion vectors with BigANN benchmark and recall

of 0.9578

Series1 Series2

Database size: 1.28TB (Data: 560 GB, Index: 720GB)

pgvector v0.5: HNSW index

Up to 9x

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Amazon Aurora Limitless Database

Single interface

Transactionally

consistent

Millions of

transactions

DistributedServerless

Petabytes of

data

Scaling Managed

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Amazon Bedrock Knowledge Bases
N A T I V E S U P P O R T F O R R A G

AMAZON BEDROCK
KNOWLEDGE BASES

M O D E L

Anthropic – Claude

Meta – Llama

Amazon Titan Text

AI21 Labs – Jurassic2

U S E R

Q U E R Y

A U G M E N T E D

P R O M P T

A N S W E R

32

1 4 5 6

A M A Z O N
B E D R O C K

Securely connect FMs

to data sources for

RAG to deliver more

relevant responses

Fully managed RAG

workflow including

ingestion, retrieval,

and augmentation

Built-in session

context management for

multiturn conversations

Automatic citations

with retrievals to

improve transparency

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Decompose into steps
using available actions
and Amazon Bedrock

Knowledge Bases

Until final answer

Observe results

Think about next step

Execute action or
search knowledge base

Amazon Bedrock Agents
E N A B L E G E N E R A T I V E A I A P P L I C A T I O N S T O E X E C U T E M U L T I S T E P T A S K S U S I N G C O M P A N Y S Y S T E M S A N D

D A T A S O U R C E S

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Looking ahead

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

pgvector roadmap

• Filtering enhancements, e.g., index-based prefiltering (in progress)

• More data types per dimension (fp8, uint8) (in progress)

• Streaming I/O

• Additional quantization techniques (statistical)

• Parallel query

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Conclusion

• Primary design decision: query performance and recall

• Determine where to invest: storage, compute, indexing strategy

Amazon Aurora PostgreSQL-Compatible features help you scale your
vector workloads

• Plan for today and tomorrow: pgvector is rapidly innovating

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Thank you!

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Please complete the session
survey in the mobile app

Jonathan Katz

jkatz@amazon.com

@jkatz05

	Slide 1
	Slide 2: Best practices for querying vector data for gen AI apps in PostgreSQL
	Slide 3: Agenda
	Slide 4: Overview of generative AI and the role of databases
	Slide 5
	Slide 6
	Slide 7: What are vector embeddings?
	Slide 8: How vector embeddings are used
	Slide 9: Challenges with vectors
	Slide 10: Approximate nearest neighbor (ANN)
	Slide 11: Criteria that impact selection of vector storage
	Slide 12: Metrics for evaluating a vector storage system
	Slide 13: What impacts vector storage performance metrics?
	Slide 14
	Slide 15: PostgreSQL as a vector store
	Slide 16: Why PostgreSQL?
	Slide 17: Why use PostgreSQL for vector searches?
	Slide 18: Why care about ACID for vectors?
	Slide 19: What is pgvector?
	Slide 20: Why pgvector?
	Slide 21: pgvector: Year-in-review timeline
	Slide 22: Indexing methods: IVFFlat and HNSW
	Slide 23: Which search method do I choose?
	Slide 24: pgvector strategies and best practices
	Slide 25: Best practices for pgvector
	Slide 26: Best practices: Storage configuration
	Slide 27: How does PostgreSQL store vectors?
	Slide 28: How vector size impacts space utilization
	Slide 29: Vectors and page sizes
	Slide 30: 🍞 TOAST – handling larger data
	Slide 31: Visualizing TOAST for pgvector
	Slide 32: Impact of TOAST on vector data
	Slide 33: How storage selection impacts QPS
	Slide 34: Impact of TOAST on pgvector queries
	Slide 35: Impact of TOAST on pgvector queries
	Slide 36: Parallel worker underestimation
	Slide 37: Impact of TOAST on pgvector queries
	Slide 38: Strategies for pgvector and TOAST
	Slide 39: Best practices: HNSW build and storage parameters
	Slide 40: HNSW index building parameters
	Slide 41: HNSW query parameters
	Slide 42: Querying an HNSW index
	Slide 43: Querying an HNSW index
	Slide 44: Querying an HNSW index
	Slide 45: Querying an HNSW index
	Slide 46: Querying an HNSW index
	Slide 47: Querying an HNSW index
	Slide 48: What happens internally searching a HNSW index?
	Slide 49: HNSW entry level distribution
	Slide 50: How “m” impacts query time via vectors compared
	Slide 51: How “m” impacts query time via vectors compared
	Slide 52: Why index build speed matters (serial build)
	Slide 53: Why index build speed matters (parallel build)
	Slide 54: How hnsw.ef_construction impacts query performance
	Slide 55: How “m” impacts index build time & search quality
	Slide 56: Choosing a data ingestion method
	Slide 57: Comparison of ingestion methods – no index
	Slide 58: Ingestion with COPY
	Slide 59: Ingestion with COPY BINARY
	Slide 60: Vector ingestion and concurrency – no index
	Slide 61: Parallel index build vs. concurrent inserts
	Slide 62: Best practices for building HNSW indexes
	Slide 63: Best practices: Quantization
	Slide 64: What is quantization?
	Slide 65: pgvector and scalar quantization (2 byte)
	Slide 66: pgvector and binary quantization
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71: Best practices for quantization
	Slide 72: Best practices: Filtering
	Slide 73: What is filtering?
	Slide 74: How filtering impacts ANN queries
	Slide 75: Considerations for filtering strategy
	Slide 76: Remember: Speed of 5,000 distance operations
	Slide 77: Pre-v0.8.0 filtering strategies
	Slide 78: pgvector v0.8.0+ changes for filtering
	Slide 79: Example: Index strategy when using filters
	Slide 80: Example: Index strategy when using filters
	Slide 81: Example: Index strategy when using filters
	Slide 82: Example: Index strategy when using filters
	Slide 83: Example: Index strategy when using filters
	Slide 84: Example: Index strategy when using filters
	Slide 85: Best practices for filtering
	Slide 86: Amazon Aurora features for vector search
	Slide 87: Amazon Aurora Designed for unparalleled high performance and availability at global scale with full MySQL and PostgreSQL compatibility at 1/10th the cost of commercial databases
	Slide 88: Amazon Aurora features for vector workloads
	Slide 89: Scale further with Aurora Optimized Reads
	Slide 90: Amazon Aurora Limitless Database
	Slide 91: Amazon Bedrock Knowledge Bases
	Slide 92: Amazon Bedrock Agents
	Slide 93: Looking ahead
	Slide 94: pgvector roadmap
	Slide 95: Conclusion
	Slide 96

