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Overview of generative AI and 
the role of databases
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CUSTOMER 

Is it possible to exchange the

shoes I bought for blue ones?

Human: You are an agent who manages orders and returns on an online retail website. Given a set of APIs, Conversation History, and U

Input, create an orchestration plan for executing the set of APIs in order to fulfill user input.

Tags

Emphasis

(capitalized)

DO NOT go into a loop and return exact same apis with exact same api_input as previous observation
Convergence 

criteria

Provide only ONE action per $JSON_BLOB, as shown:

{ "api": $API_NAME, "verb": $HTTP_VERB, "api_input": { $PARAMETER: {"value": $INPUT, "source": $SOURCE} } }

Format 

(JSON)

Conversation History: Below is the history of the conversation between Human and AI and the apis predicted and executed for that
History 

format

1

2

3

4

5

DEVELOPER CREATED AGENT

Of course, do you have your order 

number?

Valid "api" values are GetOrderHistory::GetProductCatalogue, GetProductAvailability::UpdateOrder, human::human or "Cannot Ans

- DO NOT return an api if all required parameter values are not present.

- DO NOT replace the placeholders in the api_name with api_inputs. 

- Return available parameters in api_inputs ONLY.

Valid "verb" is HTTP verb used in "APIs" e.g. GET, PUT etc

Valid "api_input" as json from "User Input", "Observation" or "Conversation History". 

- NEVER assume value for any parameter, mark the value as "null" if not available. 
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Retrieval Augmented 
Generation (RAG)

Configure foundation model
to interact with your data

A N S W E RQ U E S T I O N

K N O W L E D G E  
B A S E S

F O U N D A T I O N
M O D E L

How much do these blue 

shoes cost?

Product catalog

Price data

Those blue shoes cost

$59.99

Sorry, I don't know
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What are vector embeddings?

Source 
domain-

specific data
Tokenization Vectorization

Store in vector 
data store

Perform 
semantic 
similarity 

search

Include 
semantically 

similar context 
in prompt

Embeddings: When vector elements are semantic, used in generative AI

Documents

Audio/video

Images

Semantic elements:

• Words, phrases

• Paragraphs, documents

• Scenes, song sections

• Faces, detected

picture elements

• And more

0.35 0.1 0 0.9 001.0 00 0001.0 0 0…

0.35 0.1 0 0.8 001.0 00 0001.0 0 0…

0.15 0.1 0 0.7 001.0 00 0001.0 0 0…

3D simplified representation. Embeddings can 

have thousands of dimensions. Source: 

https://daleonai.com/embeddings-explained 

https://daleonai.com/embeddings-explained
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How vector embeddings are used

Document 

chunks

Amazon Titan 

Embeddings
PDF 

document

Amazon Aurora 

PostgreSQL-

Compatible 

Edition (pgvector)

User

Embeddings Amazon 

Bedrock FM

1

4

Question

Question + context

Response

2 3

5

6

7
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Challenges with vectors

• Time to generate embeddings

• Embedding size

• Compression

• Query time

Blue elephant vase 

that can hold up to 

three plants in it, 

hand painted…

0.1234

0.1231

0.1232

0.9005

0.2489

1536 dimensions

4-byte floats

6152B => 6KiB

0.12310

0.24234

0.59405

0.23430

0.23432

0.20551

0.70543

0.20559

0.20559

0.70543

0.23432

0.24234

0.23430

0.12310

0.20551

0.59405

1,000,000 => 5.7GB
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Approximate nearest neighbor (ANN)

• Find similar vectors without 
searching all of them

• Faster than exact nearest 
neighbor

• “Recall” – % of expected results

Recall: 80%
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Criteria that impact selection of vector storage

• Cost

• Choice of embedding / foundation model

• Ease of development

• Query performance targets

• Data ingestion patterns
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Metrics for evaluating a vector storage system

Recall

Build time

Size
Index

Throughput (QPS)

Latency (p99)

Single client

Peak throughput

Query
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What impacts vector storage performance metrics?

• Choice of embedding model

• Number of vector dimensions

• Choice of indexing algorithm

• Query patterns (full search, filtering, hybrid search)

• Quantization

• Ingestion / modification patterns

• Infrastructure resources/utilization
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Enabling
vector search 

across our services

Amazon 

DocumentDB

Amazon Neptune

Amazon DynamoDB

via zero-ETL

Amazon MemoryDB

Amazon 

OpenSearch Service

Amazon RDS for PostgreSQL

Amazon 

OpenSearch Serverless

Amazon Aurora 

PostgreSQL-Compatible
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PostgreSQL as a vector store
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Why PostgreSQL?
Open source

• Active development for more than 35 years 

• Controlled by a community, not a single 
company

Performance and scale

• Robust data type implementations

• Extensive indexing support

• Parallel processing for complex queries

• Native partitioning for large tables

PostgreSQL is a trademark or registered trademark of the PostgreSQL 

Community Association of Canada, and used with their permission.
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Why use PostgreSQL for vector searches?

• Existing client libraries work without modification

▪ May require an upgrade

• Convenient to co-locate app + AI/ML data in same database 

• Interfacing with PostgreSQL storage gives ACID transactional storage
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Why care about ACID for vectors?

• Atomicity: “All or nothing” stored in transaction (bulk loads)

• Consistency: Follows rules for other data stored in database

• Isolation: Correctness in returned results; committed transactions 
“immediately available”

• Durability: Once committed, vectors are safely stored



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What is pgvector?

Adds support for storage, indexing, searching, metadata with choice of distance

vector data type

Supports HNSW & IVFFlat indexing, with

options for scalar and binary quantization 
Distance operations include
Cosine, Euclidean/L2, Manhattan/L1,

Dot product, Hamming, Jaccard

Exact nearest neighbor (K-NN)

Approximate nearest neighbor (ANN)

Co-locate with embeddings

github.com/pgvector/pgvector

https://github.com/pgvector/pgvector
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2023

Vector searches in PostgreSQL

“It was there”

Can use existing PostgreSQL drivers

Open source

C-based

2024

High-performance vector searches

Support for larger vectors

Sustained, rapid improvements

Better support in developer tools

Why pgvector?
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pgvector: Year-in-review timeline

• v0.4.x (1/2023 – 6/2023)

▪ Improved IVFFlat cost estimation

▪ Store higher dimensional vectors

• v0.5.x (8/2023 – 10/2023)

▪ Add HNSW index + distance function 
performance improvements

▪ Parallel IVFFlat builds

• v0.6.x (1/2024 – 3/2024)

▪ Parallel HNSW index builds + in-
memory build optimizations

• v0.7.x (4/2024 – 9/2024)

▪ halfvec (2-byte float), bit(n) index 
support, sparsevec (up to 1B dim)

▪ Quantization (scalar/binary), 
Jaccard/Hamming distance, explicit 
SIMD

• v0.8.x (10/2024)

▪ Iterative index scans

▪ HNSW search memory reduction / 
insert speedups

▪ Improved HNSW cost estimation
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Indexing methods: IVFFlat and HNSW

• IVFFlat

▪ K-means based

▪ Organize vectors into lists

▪ Requires prepopulated data

▪ Insert time bounded by # lists

• HNSW

▪ Graph based

▪ Organize vectors into 
“neighborhoods”

▪ Iterative insertions

▪ Insertion time increases as data in 
graph increases 
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Which search method do I choose?

• Exact nearest neighbors: No index

• Fast indexing: IVFFlat*

• Easy to manage: HNSW

• High performance/recall: HNSW

• Filtering: Depends on your selectivity

▪ High selectivity (most results filtered out): B-tree / GIN / GiST / BRIN / no index

▪ Low selectivity: HNSW (+ iterative scan)
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pgvector strategies and
best practices
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Best practices for pgvector

01 Storage configuration

02 HNSW build and search parameters

03 Filtering

04 Quantization
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Best practices:
Storage configuration
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How does PostgreSQL store vectors?

• Page: PostgreSQL atomic storage unit

▪ 8192 bytes = 8K = 8KiB

• Vector indexes have “wasted space”

▪ 1,536-dim vector (6 KiB) has 2KiB “empty space”

(1,[1,2,3]),(2,[2,3,4]),(3,[3,4

,5]),(4,[4,5,6]),(5,[5,6,7]),(6,

[6,7,8]),(7,[7,8,9]),(8,[8,9,1

0]),(9,[9,10,11]),(10,[10,11,

12]),(11,[11,12,13]),(12,[12

,13,14]),(13,[13,14,15]),(14

,[14,15,16]),(15,[15,16,17])

,(16,[16,17,18]),(17,[17,18,

19]),(18,[18,19,20]),(19,[19

,20,21])
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How vector size impacts space utilization

Dimensions Vectors / page Wasted space (B)

128 15 308 

256 7 916 

384 5 428 

512 3 1,988 

768 2 2,000 

1,024 1 4,060 

1,536 1 2,012 

2,000 1 156 

PAGE_SIZE – PAGE_HEADER – (VECTORS * 4) – VECTORS * (4 * DIMS + 8)
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Vectors and page sizes

• Heap (table) pages are resizable as a compile time 
flag

• Index pages are not resizable

• This is a real ( ) problem for vectors

▪ 1536-dim 4-byte vector = 6KiB

▪ 3072-dim 4-byte vector = 12KiB
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 TOAST – handling larger data

• TOAST (The Oversized-Attribute Storage Technique) is a mechanism 
for storing data larger than 8KB

▪ By default, PostgreSQL “TOASTs” values over 2KB (510d 4-byte float)

• Storage types:

▪ PLAIN: Data stored inline with table

▪ EXTERNAL: Data stored in TOAST table when threshold exceeded

– pgvector default 0.6.0+

▪ EXTENDED: Data stored/compressed in TOAST table when threshold exceeded

– pgvector default before 0.6.0
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Visualizing TOAST for pgvector

12,"jkatz",[0.3213,0.

12321,0.12312,0.12

321,0.12321,0.1232

1,0.1123123,0.1232

1,0.12321,0.1232,0.

12312,0.12321,0.12

321,0.12312]

PLAIN

12,"jkatz",12345678 [0.3213,0.12321,0.1

2312,0.12321,0.123

21,0.12321,0.11231

23,0.12321,0.12321

,0.1232,0.12312,0.1

2321,0.12321,0.123

12]

EXTENDED / EXTERNAL
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Impact of TOAST on vector data

• Traditionally, TOAST data is not on the “hot path”

• Impacts query plan and maintenance operations

• Compression is ineffective

• Unable to use for index pages
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How storage selection impacts QPS

5,000 cosine distance operations (<=>) – single connection (r7i.16xlarge)

PLAIN EXTERNAL

Dimensions p50 (ms) QPS p50 (ms) QPS

128 1.2 863 1.2 814 

256 1.5 655 1.5 658 

384 1.7 591 1.7 587 

512 2.0 491 9.8 102 

768 2.4 410 10.7 93 

1,024 3.5 288 12.0 83 

1,536 4.1 246 16.2 62 

SELECT $1 <=> embedding AS distance FROM embeddings ORDER BY distance LIMIT 5000;
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Impact of TOAST on pgvector queries

Limit (cost=772135.51..772136.73 rows=10 width=12)

-> Gather Merge (cost=772135.51..1991670.17 rows=10000002 width=12)

    Workers Planned: 6

    -> Sort (cost=771135.42..775302.08 rows=1666667 width=12)

        Sort Key: ((<-> embedding))

        -> Parallel Seq Scan on vecs128 (cost=0.00..735119.34 rows=1666667 
width=12)

128 dimensions
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Impact of TOAST on pgvector queries

Limit (cost=149970.15..149971.34 rows=10 width=12)

-> Gather Merge (cost=149970.15..1347330.44 rows=10000116 width=12)

    Workers Planned: 4

    -> Sort (cost=148970.09..155220.16 rows=2500029 width=12)

        Sort Key: (($1 <-> embedding))

        -> Parallel Seq Scan on vecs1536 (cost=0.00..94945.36 rows=2500029 
width=12)

1,536 dimensions
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Parallel worker underestimation

12,"jkatz",[0.3213,0.

12321,0.12312,0.12

321,0.12321,0.1232

1,0.1123123,0.1232

1,0.12321,0.1232,0.

12312,0.12321,0.12

321,0.12312]

PLAIN

12,"jkatz",12345678 [0.3213,0.12321,0.1

2312,0.12321,0.123

21,0.12321,0.11231

23,0.12321,0.12321

,0.1232,0.12312,0.1

2321,0.12321,0.123

12]

TOAST
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Impact of TOAST on pgvector queries

Limit (cost=95704.33..95705.58 rows=10 width=12)

-> Gather Merge (cost=95704.33..1352239.13 rows=10000111 width=12)

    Workers Planned: 11

    -> Sort (cost=94704.11..96976.86 rows=909101 width=12)

        Sort Key: (($1 <-> embedding))

        -> Parallel Seq Scan on vecs1536 (cost=0.00..75058.77 rows=909101 width=12)

1,536 dimensions

SET min_parallel_table_scan_size TO 1
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Strategies for pgvector and TOAST

• Use PLAIN storage

▪ ALTER TABLE ... ALTER COLUMN ... SET STORAGE PLAIN

▪ Requires table rewrite (VACUUM FULL) if data already exists

▪ Limits vector sizes to 2,000 dimensions

• Use min_parallel_table_scan_size to induce more parallel 
workers

• TOAST is currently not available for indexes
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Best practices: HNSW build and 
storage parameters
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HNSW index building parameters

m

Maximum number of bidirectional links between indexed vectors

Default: 16

ef_construction

Number of vectors to maintain in “nearest neighbor” list

Default: 64

Recommendation: 64 or 256*
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HNSW query parameters

hnsw.ef_search

• Number of vectors to maintain in “nearest neighbor” list

• Before v0.8, must be greater than or equal to LIMIT

• v0.8+, can use hnsw.iterative_search to satisfy unmet LIMIT
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Querying an HNSW index

Layer 2
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Querying an HNSW index

Layer 2
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Querying an HNSW index

Layer 1
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Querying an HNSW index

Layer 1
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Querying an HNSW index

Layer 0
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Querying an HNSW index

Layer 0
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What happens internally searching a HNSW index?

• Maintain a list of visited

• Maintain an ordered list of candidates with 
distances

• ef_search is 1 at Layer 1+

• ef_search is ef_search (default 40) at Layer 
0

Visited

0x0102030405060708

0x0102030405060709

0x0102030405060710

Candidates

0x0102030405060708     0.0123

0x0102030405060709     0.0434

0x0102030405060710     0.0845
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HNSW entry level distribution

m Layer 1 Entry Level Layer 0 Entry Level

2 25% 50%

4 19% 75%

8 11% 87%

12 8% 92%

16 6% 94%

20 5% 95%

24 4% 96%

32 3% 97%

36 3% 97%

48 2% 98%

64 2% 98%
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How “m” impacts query time via vectors compared

m=16, ef_construction=64

# vectors compared

ef SIFT (N=1M) GIST (N=1M) GLoVE25 (N=1.1M) 1536d (N=5M) 768d (N=10M)

10 427 512 438 456 498

20 643 779 652 650 695

40 1044 1272 1049 1005 1050

80 1774 2212 1761 1629 1762

120 2438 3099 2420 2214 2449

200 3638 4755 3629 3328 3833

400 6247 8402 6303 5836 7190

800 10619 14706 10938 10563 13258
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How “m” impacts query time via vectors compared

ef

1536 

(N=5M,m=16)

1536d 

(N=5M,m=64)

768d

(N=10M,m=16)

768d

(N=10M,m=64)

10 456 605 498 1425

20 650 1257 695 2038

40 1005 2292 1050 3246

80 1629 4049 1762 5691

120 2214 5728 2449 8046

200 3328 8601 3833 12664

400 5836 15158 7190 23284

800 10563 27249 13258 42200
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Why index build speed matters (serial build)

0.82
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hnsw.ef_construction

990K 1536-dim vectors, m=16, hnsw.ef_search=20

Series1 Series2
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Why index build speed matters (parallel build)
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How hnsw.ef_construction impacts query performance
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How “m” impacts index build time & search quality
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Choosing a data ingestion method

• How you're ingesting vectors dictates methodology

▪ Bulk load vectors, then build index

▪ Iteratively add vectors to index 

• Loading technique impacts write performance

▪ Single vs. bulk inserts

▪ INSERT vs. COPY vs. COPY BINARY

• Parallel index builds vs. concurrent inserts
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Comparison of ingestion methods – no index
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Ingestion with COPY

Binary Text Driver PostgreSQL Binary
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Ingestion with COPY BINARY

Binary Driver PostgreSQL
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Vector ingestion and concurrency – no index
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Parallel index build vs. concurrent  inserts
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Best practices for building HNSW indexes

Start with the defaults (m=16, ef_construction=64)

 Better recall: ef_construction up to 256

Use PLAIN storage to maximize performance

Ingestion

 Full table: parallel build (max_parallel_maintenance_workers)

 Iterative inserts: Bulk INSERT / COPY BINARY

Quantization can help reduce storage
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Best practices: Quantization
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What is quantization?

[0.0435122, -0.2304432, -0.4521324,
 0.98652234, -0.1123234, 0.75401234]

Flat

[0.0432, -0.234, -0.452, 0.986,
-0.112, 0.751]

Scalar quantization (2-byte float)

[1, 0, 0, 1, 0, 1]

Binary quantization

[129, 99, 67, 244, 126, 230]

Scalar quantization (1-byte uint)
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pgvector and scalar quantization (2 byte)

CREATE INDEX ON documents USING

 hnsw((embedding::halfvec(3072)) halfvec_cosine_ops);

SELECT id

FROM documents

ORDER BY embedding::halfvec(3072) <=> $1::halfvec(3072)

LIMIT 10;
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pgvector and binary quantization

CREATE INDEX ON documents USING

 hnsw ((binary_quantize(embedding)::bit(3072)) bit_hamming_ops);

SELECT i.id FROM (

 SELECT id, embedding <=> $1 AS distance

 FROM items

 ORDER BY

   binary_quantize(embedding)::bit(3072) <~> binary_quantize($1)

 LIMIT 40 -- set to hnsw.ef_search

) i

ORDER BY i.distance

LIMIT 10;
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1536d 5MM (r7i.16xlarge, m=16, ef_construction=256)

Flat 2-byte float Binary (rerank)

Index Size (GB) 38.15 19.07 2.34 

Index build time (min) 21 13 4 

Recall @ ef_search = 40 0.931 0.929 0.811 

QPS @ ef_search = 40 24,216 27,084 33,984 

Recall @ ef_search = 80 0.965 0.961 0.900 

QPS @ ef_search = 80 11,057 12,759 20,410 

Recall @ ef_search = 220 0.989 0.983 0.963 

QPS @ ef_search = 220 5,242 5,983 7,856 
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Best practices for quantization

• Quantizing can reduce space, but may lose information

▪ Consult your data science team if this is an acceptable tradeoff

• Binary quantization is best for vectors with many bits (“bit diversity”)

• Recall decreases as you store more vectors
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Best practices: Filtering
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What is filtering?

SELECT id

FROM products

WHERE products.category_id = 7

ORDER BY $1 <=> products.embedding

LIMIT 10;
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How filtering impacts ANN queries

• PostgreSQL may choose not to use an ANN index

• PostgreSQL uses an ANN index, but doesn't return enough results

• Filtering occurs after using the index
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Considerations for filtering strategy

• Query patterns: Distribution of filtered vs. unfiltered queries

• Selectivity: how many rows do your filters remove?

▪ High selectivity: removes "most" rows 

• # of vector distance comparisons per query
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Remember: Speed of 5,000 distance operations

5,000 cosine distance operations (<=>) – single connection  (r7i.16xlarge)

PLAIN EXTERNAL

Dimensions p50 (ms) QPS p50 (ms) QPS

128 1.2 863 1.2 814 

256 1.5 655 1.5 658 

384 1.7 591 1.7 587 

512 2.0 491 9.8 102 

768 2.4 410 10.7 93 

1,024 3.5 288 12.0 83 

1,536 4.1 246 16.2 62 
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Pre-v0.8.0 filtering strategies

Partial indexing

CREATE INDEX ON docs

  USING hnsw(

    embedding vector_l2_ops)

  WHERE category_id = 7;

Partitioning
CREATE TABLE docs_cat7

  PARTITION OF docs

  FOR VALUES IN (7);

CREATE INDEX ON docs_cat7

 USING hnsw(embedding vector_l2_ops);
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pgvector v0.8.0+ changes for filtering

• HNSW cost estimation provide more options for query planner

▪ Alternative index selection / sequential scan

• Iterative scans: keep scanning index LIMIT satisfied / 
hnsw.max_scan_tuples reached

▪ Helps "overfiltering" problem

▪ hnsw.iterative_scan:

– relaxed_order (better recall)

– strict_order (no reordering required)

– off (default)

▪ hnsw.max_scan_tuples (default: 20,000)
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Example: Index strategy when using filters

No iterative scan (ef_search=40)

Selectivity QPS

Rows 

returned 

(avg)

10% 485 3.98 

1% 486 0.40 

0.1% 485 0.04 

0.01% 451 0.00 

CREATE TABLE embeddings (

  filter_10 int,

  filter_1 int,

  filter_01 int,

  filter_001 int,

  embedding vector (512)

);

CREATE INDEX ON embeddings USING

  hnsw (embedding vector_cosine_ops);

r7i.16xlarge, 5,000,000 512-dim vectors, k=10, single connection
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Example: Index strategy when using filters

r7i.16xlarge, 5,000,000 512-dim vectors, k=10, single connection

No iterative scan (ef_search=40)

No iterative scan 

(ef_search=1000)

Selectivity QPS

Rows 

returned 

(avg) Selectivity QPS

Rows 

returned 

(avg)

10% 485 3.98 10% 27 10.00 

1% 486 0.40 1% 26 8.77 

0.1% 485 0.04 0.1% 25 1.00 

0.01% 451 0.00 0.01% 25 0.10 

SELECT $1 <=> embedding AS distance FROM embeddings
WHERE filter_10 = $2
ORDER BY distance LIMIT 10
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Example: Index strategy when using filters

r7i.16xlarge, 5,000,000 512-dim vectors, k=10, single connection

No iterative scan 

(ef_search=1000)

Iterative scan (ef_search=40, 

iterative_scan=relaxed_order, 

max_tuples_scanned=20000)

Selectivity QPS

Rows returned 

(avg) QPS

Rows returned 

(avg)

10% 27 10.00 196 10.00 

1% 26 8.77 37 10.00 

0.1% 25 1.00 26 9.99 

0.01% 25 0.10 16 2.06 

SET hnsw.iterative_scan TO relaxed_order;
SET hnsw.max_tuples_scanned TO 20000;
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Example: Index strategy when using filters

r7i.16xlarge, 5,000,000 512-dim vectors, k=10, single connection

CREATE INDEX ON embeddings (filter_10);

Iterative scan (ef_search=40, 

iterative_scan=relaxed_order, 

max_tuples_scanned=20000) B-tree

Selectivity QPS

Rows returned 

(avg) QPS

Rows returned 

(avg)

10% 196 10.00 1 10.00 

1% 37 10.00 12 10.00 

0.1% 26 9.99 125 9.88 

0.01% 16 2.06 900 10.00 
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Example: Index strategy when using filters

r7i.16xlarge, 5,000,000 512-dim vectors, k=10, single connection

CREATE INDEX ON embeddings (filter_10, filter_01);

ALTER TABLE embeddings ADD COLUMN filters;
UPDATE embeddings SET filters = jsonb_build_object('filter_10', filter_10, ...);
CREATE INDEX ON embeddings USING gin(filters jsonb_path_ops);

Iterative scan 

(relaxed_order) B-tree (multicolumn) GIN (JSONB)

Selectivity QPS

Rows 

returned 

(avg) QPS

Rows 

returned 

(avg) QPS

Rows 

returned 

(avg)

10% + 1% 20 9.99 114 10.00 26 10.00 

10% + 0.1% 16 2.08 1,138 10.00 162 10.00 
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Example: Index strategy when using filters

r7i.16xlarge, 5,000,000 512-dim vectors, k=10, single connection

Index size (GB) x smaller
HNSW 12.72 -
B-tree 0.03 424x
B-tree 

(multicolumn) 0.03 424x
GIN 0.07 181x
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Best practices for filtering

• When possible, avoid using an ANN index (HNSW / IVFFlat)

▪ B-tree: Known, fixed set of filters

▪ GIN: Store filters in JSONB

▪ Other indexes for specialized data types (GiST, BRIN)

• If mix of selectivity, use both ANN and non-ANN indexes

• Partitioning / partial indexes can segment data with low selectivity
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Amazon Aurora features for 

vector search
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Amazon Aurora
Designed for unparalleled high performance and availability at global scale with full MySQL and PostgreSQL 
compatibility at 1/10th the cost of commercial databases

▪ 5x throughput of standard MySQL 

and 3x of standard PostgreSQL

▪ Scale out up to 15 read replicas

▪ Decoupled storage and compute 

enabling cost optimization

▪ Fast database cloning

▪ Distributed, dynamically scaling 

storage subsystem

Performance & 

scalability

▪ 99.99% availability with multi-AZ

▪ Data is durable across 3 AZs 

(customers only pay for 1 copy)

▪ Automatic, continuous, 

incremental backups with point-

in-time recovery (PITR)

▪ Failovers in < 10 seconds 

▪ Fault-tolerant, self-healing, auto-

scaling storage

▪ Global database for disaster  

recovery

Availability & 

durability

▪ Network isolation

▪ Encryption at rest/in transit

▪ Supports multiple secure 

authentication mechanisms and 

audit controls

Highly secure

▪ Automates time-consuming 

management of administration 

tasks like hardware provisioning, 

database setup, patching, and 

backups

▪ Serverless configuration options

Fully managed
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Amazon Aurora features for vector workloads
• Aurora PostgreSQL-Compatible with Optimized Reads

▪ NVMe caching

• Higher memory instances (r7g / r7i)

• Amazon Aurora PostgreSQL Limitless Database: automated horizontal scaling

• Aurora as an Amazon Bedrock knowledge base

• AuroraML: Generate embeddings directly from Aurora

• Compatibility with frameworks like LangChain and LlamaIndex
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Scale further with Aurora Optimized Reads

Amazon Aurora Optimized 

Reads and pgvector increase 

queries per second for vector 

search by up to 9x in workloads 

that exceed available instance 

memory

1 2 3 4 5 6 7 8
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)

Clients

1 billion vectors with BigANN benchmark and recall 

of 0.9578

Series1 Series2

Database size: 1.28TB (Data: 560 GB, Index: 720GB)

pgvector v0.5: HNSW index

Up to 9x
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Amazon Aurora Limitless Database

Single interface

Transactionally 

consistent

Millions of 

transactions

DistributedServerless

Petabytes of 

data

Scaling Managed
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Amazon Bedrock Knowledge Bases
N A T I V E  S U P P O R T  F O R  R A G

AMAZON BEDROCK 
KNOWLEDGE BASES

M O D E L

Anthropic – Claude

Meta – Llama

Amazon Titan Text

AI21 Labs – Jurassic2

U S E R  

Q U E R Y

A U G M E N T E D  

P R O M P T

A N S W E R

32

1 4 5 6

A M A Z O N  
B E D R O C K

Securely connect FMs 

to data sources for 

RAG to deliver more 

relevant responses

Fully managed RAG 

workflow including 

ingestion, retrieval, 

and augmentation

Built-in session 

context management for 

multiturn conversations

Automatic citations 

with retrievals to 

improve transparency
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Decompose into steps 
using available actions 
and Amazon Bedrock 

Knowledge Bases

Until final answer

Observe results

Think about next step

Execute action or 
search knowledge base

Amazon Bedrock Agents
E N A B L E  G E N E R A T I V E  A I  A P P L I C A T I O N S  T O  E X E C U T E  M U L T I S T E P  T A S K S  U S I N G  C O M P A N Y  S Y S T E M S  A N D  

D A T A  S O U R C E S
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Looking ahead
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pgvector roadmap

• Filtering enhancements, e.g., index-based prefiltering (in progress)

• More data types per dimension (fp8, uint8) (in progress)

• Streaming I/O

• Additional quantization techniques (statistical)

• Parallel query
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Conclusion

• Primary design decision: query performance and recall

• Determine where to invest: storage, compute, indexing strategy

Amazon Aurora PostgreSQL-Compatible features help you scale your 
vector workloads

• Plan for today and tomorrow: pgvector is rapidly innovating 
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Thank you!
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Please complete the session 
survey in the mobile app

Jonathan Katz

jkatz@amazon.com

@jkatz05
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