
© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Achieving scale with Amazon
Aurora PostgreSQL Limitless
Database

Anum Jang Sher

D A T 4 2 0

Senior Product Manager

Amazon Aurora

David Wein

Senior Principal Technologist

Amazon Aurora

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Agenda

01 Scaling challenges 04 Data distribution

02 Overview 05 Transactions and queries

03 Architecture 06 Get started today!

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

2023

I/O-Optimized

Optimized Reads

Global Database failover

Aurora MySQL zero-ETL
with Amazon Redshift

2014

Aurora MySQL-
Compatible
Edition

2016

Cross-Region replicas

Cross-account snapshots

Reader endpoint

Zero-downtime patching

2017

Fast database cloning

Export to Amazon S3

Auto Scaling with
Aurora Replicas

Aurora PostgreSQL-
Compatible Edition

2018

Aurora Serverless v1

Parallel query (MySQL)

Backtrack (MySQL)

Global Database

2019

Cluster cache
management

Cross-account cloning

Aurora ML

2020

128 TiB storage support

Global Database–
managed RPO

AWS Backup integration

2021

Babelfish (PostgreSQL)

Global Database
switchover

Federated querying

2024

Aurora PostgreSQL
Limitless Database

Aurora PostgreSQL zero-
ETL with Amazon Redshift

And more to come . . .

2022

Aurora Serverless v2

Blue/green deployment

Fast export to Amazon S3
(MySQL)

Trusted Language
Extensions (PostgreSQL)

Celebrating a decade of
Amazon Aurora innovation for customers

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Scaling databases

Application

Database

Failover

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Sharding

Application

A-ZA-F G-K L-P Q-U V-Z

brings scale

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Challenges

Querying

Re-sharding Capacity management

Consistency

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Challenges: Querying

Application

A-F G-K L-P Q-U V-Z

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Application

A-F G-K L-P Q-U V-Z

--Add a new column

00:00 00:02 00:0300:0200:01

--Midnight

backup

Challenges: Consistency

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Challenges: Re-sharding

Application

A-F G-K L-P Q-U V-ZA-C D-F

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Challenges: Database capacity management

Application

A-F G-K L-P Q-U V-Z

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Aurora PostgreSQL Limitless Database
M A N A G E D H O R I Z O N T A L S C A L E - O U T B E Y O N D T H E L I M I T S O F A S I N G L E I N S T A N C E

Scales to millions of write transactions per seconds

Manages petabytes of data

Operational simplicity of a single instance

Pay-per-use pricing

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

DB shard group

Create DB shard group instead of instances

Automatic scaling based on workload

Specify compute redundancy

Supported by 99.99% availability SLA

R7i.large R7g.xlarge
Aurora

Serverless
Aurora Limitless

database

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Capacity management

• DB shard group capacity is measured in Aurora
Capacity Units (ACUs)

• One ACU is a combination of 2GiB of memory

• Corresponding CPU and networking

• You set the minimum and maximum capacity

Maximum capacity (ACUs)

Aurora PostgreSQL

Limitless Database

Minimum capacity (ACUs)

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Scenario

cust_id

name

email

order_id

cust_id

amount

tax_rate_id

tax_rate_id

city

state

country

tax_rate

Order Tax rateCustomer

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Use limitless database

Order Tax rateCustomer

1 2 3

Tax rate

Customer Customer

Tax rateOrderOrderTax rate

Customer

Order

Sharded Reference

collocated

Standard

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Create sharded customer table

SET rds_aurora.limitless_create_table_mode='sharded';

SET rds_aurora.limitless_create_table_shard_key='{“cust_id"}';

CREATE TABLE customer (

 cust_id INT PRIMARY KEY NOT NULL,

 name TEXT,

 email VARCHAR(100)

);

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Create collocated order table

SET rds_aurora.limitless_create_table_mode='sharded';
SET rds_aurora.limitless_create_table_shard_key=‘{“cust_id”}';

SET rds_aurora.limitless_create_table_collocate_with='customer';

CREATE TABLE order (
 order_id INT NOT NULL,
 cust_id INT NOT NULL,
 amount DOUBLE NOT NULL,
 tax_rate_id DOUBLE,
 PRIMARY KEY (order_id, cust_id)
);

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Create reference table tax_rate

SET rds_aurora.limitless_create_table_mode='reference';

CREATE TABLE tax_rate (
 tax_rate_id INT PRIMARY KEY NOT NULL,
 city TEXT NOT NULL,
 state TEXT,
 country TEXT NOT NULL,
 tax_rate DOUBLE NOT NULL
);

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Amazon Aurora PostgreSQL
Limitless Database architecture
David Wein

Senior Principal Technologist
Amazon Aurora

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Standard Aurora architecture

Aurora cluster

Aurora distributed storage

Reader instancesWriter instance

1

2 3

Aurora volume on distributed

storage

An Aurora writer instance

Optional reader instances for

availability and read scaling

1

2

3

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Standard Aurora architecture

Aurora cluster

Aurora distributed storage

1

Aurora volume on distributed

storage

An Aurora writer instance

Optional reader instances for

availability and read scaling

Limitless Database introduces the

“shard group” concept

Limitless Database shard group

1

2

2

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Limitless Database shard group

Aurora cluster

Data access shards

Limitless Database shard group

Distributed transaction routersContained within your Aurora cluster

Encapsulates limitless database

infrastructure for your cluster

Provides an endpoint for applications

Scales resources within configured

capacity based on load and data size

Aurora distributed storage

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Distributed transaction routers

Aurora cluster

Data access shards

Limitless Database shard group

Distributed transaction routers

Serve all application traffic

Scale vertically and horizontally

based on load

Know schema and key range

placement

Assign time for transaction snapshot

and drive distributed commits

Perform initial planning of query and

aggregate results from multi-shard

queries

Aurora distributed storage

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Data access shards

Aurora cluster

Data access shards

Limitless Database shard group

Distributed transaction routers

Own portion of sharded table key

space and have full copies of

reference tables

Scale vertically and split based on

load

Perform local planning and execution

of query fragments

Execute local transaction logic

Backed by Aurora distributed storage

Aurora distributed storage

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Topology and availability

Aurora Cluster

Availability Zone 1 Availability Zone 2 Availability Zone 3

Shard Group

Aurora distributed storage

Distributed Transaction Routers

Data Access Shards

S1 S2 S3

S3 S1 S2S2 S3 S1

Compute redundancy

0, 1, and 2

Topology distributed

across Availability

Zones

Routers are fungible

and can be replaced as

necessary

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Data distribution

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Sharded tables
SET rds_aurora.limitless_create_table_mode='sharded';

SET rds_aurora.limitless_create_table_shard_key='{“cust_id"}';

CREATE TABLE customer (

 cust_id INT PRIMARY KEY NOT NULL,

 name TEXT,

 email VARCHAR(100)

);

postgres_limitless=> \d+ customer
 Partitioned table "public.customer"
 Column | Type | Collation | Nullable | Default | Storage | Compression | Stats target |
Description
----------+---------------+-----------+----------+---------+----------+-------------+--------------+--------

 cust_id | integer | | not null | | plain | | |
 name | text | | | | extended | | |
 email | char..var(100)| | | | extended | | |
Partition key: HASH (cust_id)
Partitions: customer_fs00001 FOR VALUES FROM (MINVALUE) TO ('-4611686018427387904’),
 customer_fs00002 FOR VALUES FROM ('-4611686018427387904') TO ('0’),
 customer_fs00003 FOR VALUES FROM ('0') TO ('4611686018427387904’),
 customer_fs00004 FOR VALUES FROM ('4611686018427387904') TO (MAXVALUE)

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Hash-range partitioning

Shard key is hashed to 64-bits

Ranges of 64-bit space are assigned to shards

Shards own table fragments

Routers have table fragment references, but no data

customer

MINVALUE
-4611686018427387904

-4611686018427387904
0

0
4611686018427387904

4611686018427387904
MAXVALUE

Distributed transaction routers

Data access shards

customer fragments

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved. Aurora distributed storage

Horizontal scale out

“Shard split” occurs due to
utilization or storage size

Collocated key ranges are moved
together

Leverages Aurora storage level
cloning and replication

Routers can be added

customer and order fragments

customer and order references

MINVALUE
-4611686018427387904

-4611686018427387904
0

0
4611686018427387904

4611686018427387904
MAXVALUE

Distributed transaction routers

Data access shards

4611686018427387904
9223372036854775808

9223372036854775808
MAXVALUE

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Reference tables
SET rds_aurora.limitless_create_table_mode='reference';

CREATE TABLE tax_rate (
 tax_rate_id INT PRIMARY KEY NOT NULL,
 city TEXT NOT NULL,
 state TEXT,
 country TEXT NOT NULL,
 tax_rate DOUBLE NOT NULL
);

tax_rate

tax_rate

tax_rate

tax_rate

tax_rate

Distributed transaction routers

Data access shards

Strongly consistent (ACID writes)

Enables join pushdown

Frequent read/join, infrequent write

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Transactions

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Transaction design goal

PostgreSQL semantics for READ COMMITED and
REPEATABLE READ

…with a consistent view as in a single system

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Challenges in a distributed database

Coordination limits

scalability

Query fragments execute

at different times

Transaction scope

unknown until commit

Maintain order Consistent restores

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Limitless ACID properties

PostgreSQL read committed,
repeatable read (SI)

• Same semantics as single node
PostgreSQL

• External consistency

Multi-shard writes are atomic

• All participants commit at same
effective time

DDLs are transactional and
strongly consistent

• DDLs are always RC, same as
PostgreSQL

• Can be initiated from any SQL
connection

Single system backup

• Point-in-time-restore fully
consistent

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

PostgreSQL MVCC snapshots simplified

PostgreSQL snapshots are taken as of now

• Knows the current XID . . . a transaction start sequence number

• Records the XID of all running transactions

• Compares this with XID recorded on the tuples it is scanning

• Tuple header has XID of inserter, deleter

Illustrative only - full implementation is more complex

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Invisible Tuples

• Written by an XID > snapshot XID

• Written by an XID that isn’t
committed

• Written by an XID running when the
snapshot was taken

Visible Tuples

• Your own uncommitted writes

• Everything else

PostgreSQL snapshots simplified

Illustrative only - full implementation is more complex

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Limitless does snapshots as of then

Transaction router establishes the snapshot time now

Router passes this time to shards along with query fragment

Shards create their local snapshot as of then

Multi-shard snapshots will use the same time on all shards...then

Is transaction commit time earlier than snapshot time? Visible.

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Distributed clocks

Historically, relying on wall time between multiple systems doesn’t
work

Innovation and major investment in time infrastructure makes this
possible in AWS

Database algorithms built on highly reliable, drift bounded clocks

Extremely scalable design

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Bounded clocks in EC2

Amazon Time Sync Service provides high quality time to EC2 instances

ClockBound is an open source daemon that provides {earliest,latest}
uncertainty bounds, typically < 1msec

Actual true time guaranteed between {earliest,latest}

New architecture has clock source on Nitro card, <50 usec uncertainty

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Repeatable read – distributed (with clocks)

Transaction T1

BEGIN TRANSACTION ISOLATION LEVEL
REPEATABLE READ;

SELECT status FROM order WHERE cust_id
= 619 and order_id = 61890340;
filling

SELECT status FROM order WHERE cust_id
WHERE cust_id = 801 and order_id =
80044011;

filling

Transaction T2

BEGIN;

SELECT status FROM order WHERE cust_id
WHERE cust_id = 801 and order_id =
80044011;

filling

UPDATE order SET status = ‘shipped’ WHERE
cust_id = 801 and order_id = 80044011;

COMMIT;

Transaction T3

SELECT status FROM order WHERE cust_id
WHERE cust_id = 801 and order_id =
80044011;

shipped

1) router gets time t100

2) execute on shard w/cust_id

619 using snapshot@t100

1) router gets time t103

2) execute on shard w/cust_id

801 using snapshot@t103

1) router uses 1PC on shard

2) shard assigns commit@t110

3) acks commit when

a) writes durable on disk

b) earliest possible time > t110

1) router gets time t125

2) execute on shard w/cust_id

801 using snapshot@t125

1) execute on shard w/cust_id

801 using snapshot@t100

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Multi-shard writes

Build on modified two-phase commit protocol

Router coordinates distributed commit

All shards will commit the transaction with the same commit time

Commit latency is roughly 2–3x single shard commit

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Transactions conclusion

Same RC/RR semantics as PostgreSQL

All reads are consistent, w/o quorum, even on failover

Commits w/single shard writes scale linearly (millions/sec)

Distributed commits are atomic

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Queries & Performance

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Fundamentally Aurora PostgreSQL

PostgreSQL parser and semantics

Broad surface area coverage Selected extensions

PostgreSQL wire compatible

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Query execution basics

PostgreSQL foreign tables

foundation

Enhancements in core engine

A custom foreign data wrapper

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Query flow

Router

1. Receives query from client

2. Plans what can be sent to shards
and any joins that must be done

3. Sends partial queries to shards with
transaction context

7. Router does final joins, filters, and
aggregations as necessary

Shard

4. Receives partial query from router

5. Plans local joins and scans

6. Execute and sent results to router

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Locality is key to performance

Lowest latency and best scalability when locality is maintained

Push execution close to the data

Reduce messaging, leverages caching

Collocated and reference tables are key building blocks

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Single shard optimization

Best performance when router determines query goes to a single shard

postgres_limitless=> EXPLAIN (VERBOSE, COSTS OFF) SELECT * FROM customers WHERE
customer_id = 100;

 QUERY PLAN

 Foreign Scan
 Output: customer_id, other_id, customer_name, balance
 Remote SQL: SELECT customer_id,
 other_id,
 customer_name,
 balance
 FROM public.customers
 WHERE (customer_id = 100)
 Single Shard Optimized

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Single shard join pushdown

postgres_limitless=> EXPLAIN (VERBOSE, COSTS OFF) SELECT * FROM orders
 LEFT JOIN zipcodes ON orders.zipcode_id = zipcodes.zipcode_id
 WHERE customer_id = 11;

 QUERY PLAN

Foreign Scan
 Output: customer_id, order_id, zipcode_id, customer_name, balance, zipcodes.zipcode_id,
zipcodes.city
 Remote SQL: SELECT orders.customer_id,
 orders.order_id,
 orders.zipcode_id,
 orders.customer_name,
 orders.balance,
 zipcodes.zipcode_id,
 zipcodes.city
 FROM (public.orders
 LEFT JOIN public.zipcodes ON ((orders.zipcode_id = zipcodes.zipcode_id)))
 WHERE (orders.customer_id = 11)
 Single Shard Optimized

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Function distribution

Collection of statements that operate on the same key value can be
wrapped in a function

Significant improvement in latency and reduction in router CPU

See “Function distribution” and limitless_distribute_function
in the docs

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Parallel operations

Parallel operations speed up via multi-shard execution

Some examples:

 Create index

 Analyze

 Vacuum

 Aggregates (count, sum, min, max)

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Low latency at scale

Experiment in us-east-1

Three big client drivers

distributing random

updates across 100B rows

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Get started today!

aws rds create-db-shard-group

 --db-cluster-identifier proddb

 --db-shard-group-identifier proddb-sg

 --min-acu 150

 --max-acu 600

 --compute-redundancy 2

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Summary

✓ Challenges for scaling

✓ Scales to millions of write transactions per second

✓ Manages petabytes of data

✓ Scalable architecture

✓ Data distribution

✓ Query and transactions

Get started today with AWS console: https://console.aws.amazon.com/

Learn more: https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/limitless.html

https://console.aws.amazon.com/
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/limitless.html

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Related sessions

Session ID Session Title

DAT416 Scalable database solutions with Aurora PostgreSQL Limitless Database

DAT316 Build scalable and cost-optimized apps with Amazon Aurora Serverless

DAT424 Get started with the latest Amazon Aurora innovations

DAT405 Deep dive into Amazon Aurora and its innovations

DAT304 Amazon Aurora HA and DR design patterns for global resilience

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Thank you!

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Please complete the session
survey in the mobile app

Anum Jang Sher

anujangs@amazon.com

David Wein

dcw@amazon.com

	Slide 1
	Slide 2: Achieving scale with Amazon Aurora PostgreSQL Limitless Database
	Slide 3: Agenda
	Slide 4: Celebrating a decade of Amazon Aurora innovation for customers
	Slide 5: Scaling databases
	Slide 6: Sharding
	Slide 7: Challenges
	Slide 8: Challenges: Querying
	Slide 9: Challenges: Consistency
	Slide 10: Challenges: Re-sharding
	Slide 11: Challenges: Database capacity management
	Slide 12: Aurora PostgreSQL Limitless Database
	Slide 13: DB shard group
	Slide 14: Capacity management
	Slide 15: Scenario
	Slide 16: Use limitless database
	Slide 17: Create sharded customer table
	Slide 18: Create collocated order table
	Slide 19: Create reference table tax_rate
	Slide 20: Amazon Aurora PostgreSQL Limitless Database architecture
	Slide 21: Standard Aurora architecture
	Slide 22: Standard Aurora architecture
	Slide 23: Limitless Database shard group
	Slide 24: Distributed transaction routers
	Slide 25: Data access shards
	Slide 26: Topology and availability
	Slide 27: Data distribution
	Slide 28: Sharded tables
	Slide 29: Hash-range partitioning
	Slide 30: Horizontal scale out
	Slide 31: Reference tables
	Slide 32: Transactions
	Slide 33: Transaction design goal
	Slide 34: Challenges in a distributed database
	Slide 35: Limitless ACID properties
	Slide 36: PostgreSQL MVCC snapshots simplified
	Slide 37: PostgreSQL snapshots simplified
	Slide 38: Limitless does snapshots as of then
	Slide 39: Distributed clocks
	Slide 40: Bounded clocks in EC2
	Slide 41: Repeatable read – distributed (with clocks)
	Slide 42: Multi-shard writes
	Slide 43: Transactions conclusion
	Slide 44: Queries & Performance
	Slide 45: Fundamentally Aurora PostgreSQL
	Slide 46: Query execution basics
	Slide 47: Query flow
	Slide 48: Locality is key to performance
	Slide 49: Single shard optimization
	Slide 50: Single shard join pushdown
	Slide 51: Function distribution
	Slide 52: Parallel operations
	Slide 53: Low latency at scale
	Slide 54: Get started today!
	Slide 55: Summary
	Slide 56: Related sessions
	Slide 57

