ANNTASS

e [Nvent

DECEMBER 2 - 6, 2024 | LAS VEGAS, NV

DAT420

Achieving scale with Amazon
Aurora PostgreSQL Limitless
Database

Anum Jang Sher David Wein

Senior Product Manager Senior Principal Technologist
Amazon Aurora Amazon Aurora 4
dWS 62024, Amazon web services,

| Agenda
Scaling challenges + Data distribution
> Overview » Transactions and queries

» Architecture » Get started today!

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

Celebrating a decade of
Amazon Aurora innovation for customers

2014 2016 2018 2020 2022 2024
Aurora MySQL- Cross-Region replicas Aurora Serverless v1 128 TiB storage support Aurora Serverless v2 Aurora PostgreSQL
Compatible Cross-account snapshots Parallel query (MySQL) Global Database- Blue/green deployment Limitless Database

Edition
Reader endpoint Backtrack (MySQL) managed RPO Fast export to Amazon S3 é#[ovz?tﬁfﬁgggsgk:c?;ﬁi_ﬂ
AWS Backup integration (MySQL)

Trusted Language And more to come...
Extensions (PostgreSQL)

Zero-downtime patching Global Database

. SR | I

2017

Fast database cloning 2023

Export to Amazon S3 2019 2021 I/O-Optimized

Auto Scaling with Cluster cachi Babelfish (PostgreSQL) Optimized Reads

Aurora Replicas managemen Global Database Global Database failover
Aurora PostgreSQL- Cross-account cloning switchover Aurora MySQL zero-ETL
Compatible Edition Aurora ML Federated querying with Amazon Redshift

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

Scaling databases

Application

I .

[fi] Failover [ifii]

Database

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

S

Usage

Time

' Sharding brings scale

A-F G-K

Application

|

u

A-P

N

Q-U

s

V-Z

' Challenges

O
(.j

Querying _
Consistency
~
o
- e
G .
D G
® ® [R S .
A I .
Re-sharding Capacity management
aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

1

Challenges: Querying

Application

Challenges: Consistency

aws

--Midnight
backup

/
.
9
@

00:01

/
]
9
=

00:02

Application

--Add a new column

|
&

L-P

\
.

Q_

\
&

V-Z

vy ¥
(] L

00:00

00:0

3

Challenges: Re-sharding

Application

- (o

| Challenges: Database capacity management

@

Application

Hilll=->

Aurora PostgreSQL Limitless Database

MANAGED HORIZONTAL SCALE-OUT BEYOND THE LIMITS OF A SINGLE INSTANCE

Scales to millions of write transactions per seconds

Manages petabytes of data

Operational simplicity of a single instance

Pay-per-use pricing

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

DB shard group

t*

¥

* 1

4 ¥

Aurora

R7i.large Serverless

R7g.xlarge

Aurora Limitless Database - new info

DB shard group identifier
3 name for your DB shar
apglimitless-shardgrp
DB shard group capacity range Info
ter the minimum and maximum t

Minimum ca pacity (ACUs)

24 (48 GiB) # 520
ter a valu ter th r equal to 16 ACL Enter a valu

Maximum ca pacity (ACUs)

(1040 GiB)

DB shard group deployment

more [4

) No compute redundancy

aws

S

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

database

Aurora Limitless

Create DB shard group instead of instances

Automatic scaling based on workload
Specify compute redundancy

Supported by 99.99% availability SLA

| Capacity management

aws

p S

DB shard group capacity is measured in Aurora
Capacity Units (ACUs)

One ACU is a combination of 2GiB of memory
Corresponding CPU and networking

You set the minimum and maximum capacity

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Maximum capacity (ACUs)

Minimum capacity (ACUs)

Aurora PostgreSQL
Limitless Database

Scenario

Order Tax rate
O et o | — o | —
I | — | | — N | B
O I | B I | S
I | — I | — M | B
cust_id order_id tax_rate_1id
name cust_id city
email amount state
tax_rate_id country
tax_rate

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

| Use limitless database

aws

1

Standard Sharded Reference
Customer Order Tax rate
I | — I | —
I | — I | —
I | — I | PN
N collocated -

1 - .y 2 .
~ BN p S
?‘s ’)l ?‘s —’)|
| Customer | | Customer |
N-= | = |
i i i I
i i i I
i i i I
: Order : : Order Tax rate :
N-= ' N:= '
i i i I
i i i I
i i i I
i i i I
\~-) J \~-) !

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

3 |
ot o e 2
PR ~a

[§
I\~-----———————”
Customer
[| e— |
Order Tax rate

o—
s —

’-------
\-------‘

4
\

[
I
I
I
|
|
|
|
1
1
\
\

I Create sharded customer table

SET rds_aurora.limitless_create_table_mode='sharded"

SET rds_aurora.limitless_create_table_shard_key='{"cust_id"}’;

CREATE TABLE customer (
cust_id INT PRIMARY KEY NOT NULL,
name TEXT,
email VARCHAR(100)

);

Create collocated order table

SET rds_aurora.limitless_create_table_mode='sharded';
SET rds_aurora.limitless_create_table_shard_key=‘{“cust_1d”}';

CREATE TABLE order (

order_id INT NOT NULL,
cust_id INT NOT NULL,
amount DOUBLE NOT NULL,

tax_rate_id DOUBLE,
PRIMARY KEY (order_id, cust_id)

)E

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

Create reference table tax_rate

CREATE TABLE tax_rate (
tax_rate_id INT PRIMARY KEY NOT NULL,

city TEXT NOT NULL,
state TEXT,

country TEXT NOT NULL,
tax_rate DOUBLE NOT NULL
);

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

Amazon Aurora PostgreSQ
Limitless Database architec

David Wein

Senior Principal Technologist
Amazon Aurora

c. or its affiliates. All rights reserved.

Standard Aurora architecture

Aurora volume on distributed
storage

e An Aurora writer instance

e Optional reader instances for
availability and read scaling

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

1

88% %&

AN NN AN

A
7
N

N N AN AN NN A

. Aurora cluster

E VvV VWV WV Vv
Amazon '
Aurora

_

Writer instance

E VvV WV WV WV NN V==,

Amazon Amazon Amazon
Aurora Aurora Aurora

Reader instances

L1

[11

[111

Aurora distributed storage

Standard Aurora architecture

N
7
N

N N AN AN NN AN AN NN AN

e Aurora volume on distributed

sto rage §<> Aurora cluster
Ap-Aurera- — -iAstanee bbb bl L
Optienal-rezco-instancesfor Limitless Database shard group

e Limitless Database introduces the
“shard group” concept

111 L] L1

Aurora distributed storage

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

| Limitless Database shard group

i Aurora cluster

Contained within your Aurora cluster

Encapsulates limitless database
infrastructure for your cluster

Provides an endpoint for applications

Scales resources within configured
capacity based on load and data size

L1 LI L1]1

Aurora distributed storage
L Jd L Jd L il
TN [NN i C—
C] C] C]

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

| Distributed transaction routers

. Aurora cluster

Serve all application traffic . s
Limitless Database shard group

Scale vertically and horizontally Distributed transaction routers
based on load

N N N N
L6 e k¢ ot >
v v Wi

g iriwiely iy

Know schema and key range
placement

Assign time for transaction snapshot
and drive distributed commits

Perform initial planning of query and

aggregate results from multi-shard

queries ‘ ‘ | 1l I 1 | ‘ ‘ ‘

Aurora distributed storage
L Jd L Jd L il L
| .
[

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

| Data access shards

. Aurora cluster

Own portion of sharded table key
space and have full copies of
reference tables

I. Limitless Database shard group

N 2\ 2\

Distributed transaction routers

N N N N
L6 e k¢ ot >
v v Wi

Scale vertically and split based on
load s S S s e i i S e E AR

Perform local planning and execution Data access shards

3 aa

of query fragments

Execute local transaction logic

Backed by Aurora distributed storage

Aurora distributed storage
L Jd L Jd L il
TN [NN i C—
C] C] C]

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

| Topology and availability

Availability Zone 1

Availability Zone 2 Availability Zone 3

1 1 1 1 I 1
1 1 1 1 1 |
1 1 1 1 I 1
: e e ;
. Aurora Cluster gl b :
! I | | | |
1 1 1 1 I 1
! | | | | |
: 1 1 1 ! 1
I I | I |
P ' Shard G i . et !
Topology distributed : . ek : | Distributed Transaction Routers : : :
. oge I A i e i LA e el e e e i St BN ES Po Y S R o it A Bl e o ey i e e |
across Availability | : i = N 5 e 5 i :
Zones R > Sl) L >{}¢ o >ite ! .
I ! 1 Vv I : N\ Z I : % I I
| ! | |
dund S i e S i i et o
comPUte RS ELLS / : e Data Access Shards : | ;
0,1, and 2 Rl R T RO LCC LR E e oo e
1 | 1 1
|] 5518E . 5528E i sszé e
I - - - |
. I T 4 d I I T . . I I T o b | I
Routers are fungible | | || sz E 952 1 SIERE et e JeplEdciE: :
- L] | - - | - -
and can be replaced as ! : 1"""8 ""'"ﬁ :; 1'""@ rrnﬁ i rrn@ fmﬁ.
necessary : T AN e R e S T :
| — e :
! T 1 T 1 I
: Aurora distributed storage | | [;
: C— —31 C—1 —31 " e o]] C | P e i 1 |] | | '
. L—1 C—1 C—1 C—31 |, | [C—3 I | T g A | i [! | :
| C—1 [1 /3 | T] C—1 | = r L—3 |]] [] :
! 1 ! 1 I I
e e = e LR] [e e e I L LI S I oy N TR T I A i |
aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
~—

c. or its affiliates. All rights reserved.

| Sharded tables

SET rds_aurora.limitless_create_table_mode='sharded’;
SET rds_aurora.limitless_create_table_shard_key="{"cust_id"}’;

CREATE TABLE customer (
cust_id INT PRIMARY KEY NOT NULL,
name TEXT,
email VARCHAR(100)

);

postgres_limitless=> \d+ customer
Partitioned table "public.customer"
cColumn | Type | Collation | Nullable | Default | Storage | Compression | Stats target |
Description

—————————— o o o e e
cust_1d | 1integer | | not null | | plain | | |
hame | text | | | | extended | | |
email | char..var(100) | | | | extended | | |

Partition key: HASH (cust_id)

Partitions: customer_fs00001 FOR VALUES FROM (MINVALUE) TO ('-4611686018427387904°),
customer_fs00002 FOR VALUES FROM ('-4611686018427387904') 10 ('0’),
customer_fs00003 FOR VALUES FROM ('0') TO ('4611686018427387904’),
customer_fs00004 FOR VALUES FROM ('4611686018427387904') TO (MAXVALUE)

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

Hash-range partitioning

Shard key is hashed to 64-bits

Ranges of 64-bit space are assigned to shards

Shards own table fragments

Routers have table fragment references, but no data

L5

MINVALUE 0
-4611686018427387904 4611686018427387904
-4611686018427387904 4611686018427387904
0 MAXVALUE

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

Horizontal scale out

“Shard split” occurs due to Dol zo_uzz_rs_; oo
o e . ° | customer and orader reterences

utilization or storage size 9@6 9@6

Collocated key ranges are moved Lo S AP

together Data access shards’ ’#‘Q{

_________ t________ _________T_________
RO uters can b €d d d € d 4611686018427387904 4611686012427387904 922337M2£><3V?L5U4E775808
—46116860108427387904 ggﬂg?ﬁgﬁg@g%g@%

cloning and replication

Leverages Aurora storage level

aWS, © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved. Aurora distributed Storage

I Reference tables

SET rds_aurora.limitless_create_table_mode='reference';

CREATE TABLE tax_rate (Distributed transaction routers
tax_rate_id INT PRIMARY KEY NOT NULL,
city TEXT NOT NULL,
state TEXT,
country TEXT NOT NULL,
tax_rate DOUBLE NOT NULL
);
Strongly consistent (ACID writes)
Enables join pushdown hcsef t Yl
tax_rate tax_rate

Frequent read/join, infrequent write

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

c. or its affiliates. All rights reserved.

I Transaction design goal

PostgreSQL semantics for READ COMMITED and
REPEATABLE READ

...with a consistent view as in a single system

aws
-

| Challenges in a distributed database

e P 0 .

o A5
Coordination limits Transaction scope Query fragments execute
scalability unknown until commit at different times
o —)
- =2=3
Maintain order Consistent restores

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

Limitless ACID properties

PostgreSQL read committed,
repeatable read (S)

Same semantics as single node
PostgreSQL

External consistency

Multi-shard writes are atomic

All participants commit at same
effective time

aWS’ © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

DDLs are transactional and
strongly consistent

DDLs are always RC, same as
PostgreSQL

Can be initiated from any SQL
connection

Single system backup

- Point-in-time-restore fully
consistent

l
PostgreSQL MVCC snapshots simplified

PostgreSQL snapshots are taken as of now

- Knows the current XID . .. a transaction start sequence number
- Records the XID of all running transactions
« Compares this with XID recorded on the tuples it is scanning

Tuple header has XID of inserter, deleter

aWS’ © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

PostgreSQL snapshots simplified

Invisible Tuples Visible Tuples
« Written by an XID > snapshot XID « Your own uncommitted writes
« Written by an XID that isn't « Everything else

committed

« Written by an XID running when the
snapshot was taken

aWS’ © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserve

Limitless does snapshots as of then

Transaction router establishes the snapshot time now

Router passes this time to shards along with query fragment
Shards create their local snapshot as of then

Multi-shard snapshots will use the same time on all shards...then

Is transaction commit time earlier than snapshot time? Visible.

I
Distributed clocks

Historically, relying on wall time between multiple systems doesn't
work

Innovation and major investment in time infrastructure makes this
possible in AWS

Database algorithms built on highly reliable, drift bounded clocks

Extremely scalable design

I
Bounded clocks in EC2

Amazon Time Sync Service provides high quality time to EC2 instances

ClockBound is an open source daemon that provides {earliest,latest}
uncertainty bounds, typically < Tmsec

Actual true time guaranteed between {earliest,latest}

New architecture has clock source on Nitro card, <50 usec uncertainty

aWS’ © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

Repeatable read - distributed (with ¢

1) router gets time t100

2) execute on shard w/cust_id

Transaction T1 using snapshot@t100

BEGIN TRANSACTION ISOLATI®SN LEVEL
REPEATABLE READ;

SELECT status FROM order WHERE cust_id
= 619 and order_id = 61890340;
filling

1) execute on shard w/cust_id

using snapshot@t100

SELECT status FROM order WHERE cust_id
WHERE cust_id = 801 and order_id =
80044011;

filling

aws

© 2024, Amazon Web Services,
\—;’

, Inc. or its affiliates. All rights reserved.

lacke)

1) router gets time t103
?2) execute on shard w/cust_id
using snapshot@t103

Transaction T2

BEGIN;

SELECT status FROM order WHERE cust_id
WHERE cust_id = 801 and order_id =

80044011; 1) router uses 1PC on shard

filling 2) shard assigns commit@t110
D NI e Yd>) 2cks commit when
cust_id =780 a) writes durable on disk

COMMIT ;

Transaction T3

SELECT status FROM order WHERE cust_id
WHERE cust_id = 801 and order_id =
80044013

shipped

b) earliest possible time >t110

1) router gets time t125

?2) execute on shard w/cust_id
using snapshot@t125

Multi-shard writes
Build on modified two-phase commit protocol
Router coordinates distributed commit

All shards will commit the transaction with the same commit time

Commit latency is roughly 2-3x single shard commit

aWS’ © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

I . i
Transactions conclusion

Same RC/RR semantics as PostgreSQL
All reads are consistent, w/o quorum, even on failover
Commits w/single shard writes scale linearly (millions/sec)

Distributed commits are atomic

c. or its affiliates. All rights reserved.

Fundamentally Aurora PostgreSQL

Al
@ i
PostgreSQL wire compatible PostgreSQL parser and semantics

L[]
L]+

Broad surface area coverage Selected extensions

aWS’ © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

Query execution basics

PostgreSQL foreign tables A custom foreign data wrapper
foundation

Enhancements in core engine

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

| Query flow

Router
1. Receives query from client

2. Plans what can be sent to shards
and any joins that must be done

3. Sends partial queries to shards with Shard

transaction context
4. Receives partial query from router

5. Plans local joins and scans
6. Execute and sent results to router

7. Router does final joins, filters, and
aggregations as necessary

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

Locality is key to performance

Lowest latency and best scalability when locality is maintained
Push execution close to the data

Reduce messaging, leverages caching

Collocated and reference tables are key building blocks

' Single shard optimization

Best performance when router determines query goes to a single shard

postgres_limitless=> EXPLAIN (VERBOSE, COSTS OFF) SELECT * FROM customers WHERE
customer_id = 100;

QUERY PLAN
Foreign Scan
Output: customer_id, other_id, customer_name, balance
Remote SQL: SELECT customer_id,

other_1d,
customer_name,
balance
FROM public.customers
ANHF R nme 1d = l.
aws T e T S s o T T e et

S

' Single shard join pushdown

postgres_limitless=> EXPLAIN (VERBOSE, COSTS OFF) SELECT * FROM orders
LEFT JOIN zipcodes ON orders.zipcode_id = zipcodes.zipcode_id
WHERE customer_id = 11;

QUERY PLAN
Foreign Scan
Output: customer_id, order_id, zipcode_id, customer_name, balance, zipcodes.zipcode_id,
zipcodes.city
Remote SQL: SELECT orders.customer_id,
orders.order_1id,
orders.zipcode_id,
orders.customer_name,
orders.balance,
zipcodes.zipcode_id,
zipcodes.city
FROM (public.orders
LEFT JOIN public.zipcodes ON ((orders.zipcode_id = zipcodes.zipcode_id)))
» rde amer dd - 11)

Single Shard Optimized

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

I
Function distribution

Collection of statements that operate on the same key value can be
wrapped in a function

Significant improvement in latency and reduction in router CPU

See “Function distribution” and Timitless_distribute_function
in the docs

aWS’ © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

I
Parallel operations

Parallel operations speed up via multi-shard execution

Some examples:
Create index
Analyze
Vacuum
Aggregates (count, sum, min, max)

aWS’ © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

' Low latency at scale

60.0 s, 686401.9 tps, lat 2.357 ms stddev 0.639, 0 failed
120.0 s, 849197.9 tps, lat 2.355 ms stddev 0.639, failed
180.0 s, 848990.5 tps, lat 2.356 ms stddev 0.660, failed
: 240.0 s, B849730.9 tps, lat 2.354 ms stddev 0.649, failed
300.0 s, 836500.8 tps, lat 2.390 ms stddev 2.488, failed
360.0 s, B847194.7 tps, lat 2.361 ms stddev 1.471, failed
: 420.0 s, B848091.6 tps, lat 2.358 stddev 0.651, failed
480.0 s, 846166.1 tps, lat 2.3¢* —— —~ea——Teas —
540.0 s, 850282.2 tps, lat 2 '
0

o &
Infinity s, 0.0 tps, lat 0.000 Pgbench (16.4)
./limitless pgbench upcProgress: 60.0 s, 732174.1 tps, lat 2.206 ms stddev 0.701, 0 failed

NN DOUOY

E 1 t 1 t ‘I caling factor: 1000000 progress: 120.0 s, 897809.3 tps, lat 2.228 ms stddev 0.675, 0 failed

Xperlmen In US‘eaS = query mode: simple progress: 180.0 s, 896915.5 tps, lat 2.230 ms stddev 0.686, 0 failed

Ihumber of clients: 2000 progress: 240.0 s, 898754.1 tps, lat 2.225 stddev 0.674, 0 failed

Ihumber of threads: 2000 progress: 300.0 s, 883947.6 tps, lat 2.262 ms stddev 2.486, 0 failed

Inaximum number of tries: progress: 360.0 s, 893172.1 tps, lat 2.239 ms stddev 1.469, 0 failed

. . . lduration: 600 s progress: 420.0 s, 895048.2 tps, lat 2.234 ms stddev 0.674, 0 failed

Three blg client drivers hunber of transactions actually processecProgress: 480.0 s, 892966.3 tps, lat 2.240 ms stddev 1.598, 0 failed

Ihumber of failed transactions: 0 (0.000%)Progress: 540.0 s, 897730.2 tps, lat 2.228 ms stddev 0.681, 0 failad

distributin random atency average = 2.355 ms progress: Infinity s, 0.0 tps, lat 0.000 ms stddev 0.000, 0 #
SJ atency stddev = 1.228 ms transaction type: ./limitless pgbench update.sql -n -P 60 -T 600
nitial connection time = 11526.511 ms Scaling factor: 1000000 pgbench (16.4)

updates across 1OOB rOWS ps = 848475.083080 (without initial conrquery mode: simple progress: 60.0 s, 585688.0 tps, lat 2.451 ms stddev 0.611, 0 failed
number of clients: 2000 progress: 120.0 s, 811500.4 tps, lat 2.464 ms stddev 612, failed

inumber of threads: 2000 progress: 180.0 s, 811900.0 tps, lat
maximum number of tries: 1 progress: 240.0 s, B813461.0 tps, lat
duration: 600 s progress: 300.0 s, 801854.7 tps, lat
number of transactions actually processed: 527475230 progress: 360.0 s, 810100.2 tps, lat
number of failed transactions: 0 (0.000%) progress: 420.0 s, 812459.2 tps, lat
latency average = 2.231 ms progress: 480.0 s, 809339.0 tps, lat 2.471 ms stddev 1.564, failed
latency stddev = 1.211 ms progress: 540.0 s, 813195.7 tps, lat 2.459 ms stddev 0.635, failed
initial connection time = 11600.855 ms transaction type: ./limitless pgbench update.sql
tps = 896127.475507 (without initial connection time) scaling factor: 1000000
$: query mode: simple

inumber of clients: 2000

inumber of threads: 2000

maximum number of tries: 1

fduration: 600 s

inumber of transactions actually processed: 472903957

number of failed transactions: 0 (0.000%)

Hlatency average = 2.465 ms

latency stddev = 1.185 ms

finitial connection time = 17012.864 ms

tps = 811034.386711 (without initial connection time)

&

0. 0

.463 ms stddev 0.627, 0 failed

.458 ms stddev 0.619, 0 failed

.494 ms stddev 2.531, 0 failed

.469 stddev 1.505, 0 failed

.461 ms stddev 0.621, 0 failed
1 0
0 0

2
2
2
2
2
2
2
2

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

Get started today!

Aurora Limitless Database - new info
With Limitless Database, Aurora can automatically scale write throughput and data storage capacity beyond the limits of a single DB cluster.

DB shard group identifier

a name for your DB shard group. The name must be unique across all DB shard groups owned jour / account in the current AWS Region.
Enter DB shard group identifier

Constraints: 1 to 60 alphanumeric characters or h s. First character must be a letter. Can't contain two consecutive hyphens. Can't end with a hyphen.

DB shard group capacity range Info

Enter the minimum and maximum capacity imi b The capacity is measured in Aurora capacity units s) across all routers and sha
Minimum capacity (ACUs) Maximum capacity (ACUs)
24 (48 GiB) 384 (768 GiB)

Enter a value greater than or equal to 16 ACUs. Enter a value less than or equal to 6144 ACUs.

DB shard group deployment

The number of additional cr ailability Zone standb dding compute redundan ill have a significant impact on cost. Learn more [2

© No compute redundancy
Creates a DB shard group without standbys for each shard.

Compute redundancy with a single failover target
Each shard is created with one compute standby in a different

Compute redundancy with two failover targets
Each shard compute standbys in different Availabili

aws rds create-db-shard-group
--db-cluster-identifier proddb
--db-shard-group-identifier proddb-sg
--min-acu 150
--max-acu 600
--compute-redundancy 2

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

Summary

Challenges for scaling

Scales to millions of write transactions per second
Manages petabytes of data

Scalable architecture

Data distribution

Query and transactions
p

CALL TO Get started today with AWS console:
Learn m 3
ACTION BN LSS

1, < O 8 < <X

https://console.aws.amazon.com/
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/limitless.html

I Related sessions

[seionto [Sson e

DAT416 Scalable database solutions with Aurora PostgreSQL Limitless Database
DAT316 Build scalable and cost-optimized apps with Amazon Aurora Serverless
DAT424 Get started with the latest Amazon Aurora innovations

DAT405 Deep dive into Amazon Aurora and its innovations

DAT304 Amazon Aurora HA and DR design patterns for global resilience

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

' ey Please complete the session
y u ")] survey in the mobile app

Anum Jang Sher David Wein
anujangs@amazon.com dcw@amazon.com
aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

S

	Slide 1
	Slide 2: Achieving scale with Amazon Aurora PostgreSQL Limitless Database
	Slide 3: Agenda
	Slide 4: Celebrating a decade of Amazon Aurora innovation for customers
	Slide 5: Scaling databases
	Slide 6: Sharding
	Slide 7: Challenges
	Slide 8: Challenges: Querying
	Slide 9: Challenges: Consistency
	Slide 10: Challenges: Re-sharding
	Slide 11: Challenges: Database capacity management
	Slide 12: Aurora PostgreSQL Limitless Database
	Slide 13: DB shard group
	Slide 14: Capacity management
	Slide 15: Scenario
	Slide 16: Use limitless database
	Slide 17: Create sharded customer table
	Slide 18: Create collocated order table
	Slide 19: Create reference table tax_rate
	Slide 20: Amazon Aurora PostgreSQL Limitless Database architecture
	Slide 21: Standard Aurora architecture
	Slide 22: Standard Aurora architecture
	Slide 23: Limitless Database shard group
	Slide 24: Distributed transaction routers
	Slide 25: Data access shards
	Slide 26: Topology and availability
	Slide 27: Data distribution
	Slide 28: Sharded tables
	Slide 29: Hash-range partitioning
	Slide 30: Horizontal scale out
	Slide 31: Reference tables
	Slide 32: Transactions
	Slide 33: Transaction design goal
	Slide 34: Challenges in a distributed database
	Slide 35: Limitless ACID properties
	Slide 36: PostgreSQL MVCC snapshots simplified
	Slide 37: PostgreSQL snapshots simplified
	Slide 38: Limitless does snapshots as of then
	Slide 39: Distributed clocks
	Slide 40: Bounded clocks in EC2
	Slide 41: Repeatable read – distributed (with clocks)
	Slide 42: Multi-shard writes
	Slide 43: Transactions conclusion
	Slide 44: Queries & Performance
	Slide 45: Fundamentally Aurora PostgreSQL
	Slide 46: Query execution basics
	Slide 47: Query flow
	Slide 48: Locality is key to performance
	Slide 49: Single shard optimization
	Slide 50: Single shard join pushdown
	Slide 51: Function distribution
	Slide 52: Parallel operations
	Slide 53: Low latency at scale
	Slide 54: Get started today!
	Slide 55: Summary
	Slide 56: Related sessions
	Slide 57

