
© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Advanced data modeling with
Amazon DynamoDB

Alex DeBrie

D A T 4 0 4

AWS Data Hero

Principal

DeBrie Advisory

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

• 2023: Airline reservations (complex filtering, maintaining
constraints)

• 2022: MMORPG (architecture, constraints, transactions)

• 2021: Ecommerce (primary keys, write operations)

Previously at re:Invent

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

• DAT305: Data modeling core concepts for Amazon DynamoDB

• DAT406: Deep dive into Amazon DynamoDB

• DAT419: An insider’s look into architecture choices for
Amazon DynamoDB

Related talks

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

• Background

• Data modeling basics

• DynamoDB + napkin math

• Using Amazon DynamoDB Streams

• Make it Dynamo

Agenda

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Alex DeBrie

• AWS Data Hero

• Independent consultant

• Author, The DynamoDB Book

dynamodbbook.com

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

DynamoDB background

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Mechanical sympathy is when
you use a tool or system with
an understanding of how it
operates best.

AWS Well-Architected Framework

https://wa.aws.amazon.com/wellarchitected/2020-07-
02T19-33-23/wat.concept.mechanical-sympathy.en.html

https://wa.aws.amazon.com/wellarchitected/2020-07-02T19-33-23/wat.concept.mechanical-sympathy.en.html
https://wa.aws.amazon.com/wellarchitected/2020-07-02T19-33-23/wat.concept.mechanical-sympathy.en.html

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Key characteristics

• Fully managed and proprietary to AWS

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

DynamoDB – High level architecture

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Key characteristics

• Fully managed and proprietary to AWS

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Key characteristics

• Fully managed and proprietary to AWS

• Consistent performance at any scale

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Key characteristics

• Fully managed and proprietary to AWS

• Consistent performance at any scale

• Serverless-friendly

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Key characteristics

• Fully managed and proprietary to AWS

• Consistent performance at any scale

• Serverless-friendly

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Primary key

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Partition

1

Partition

2

fx(Username):

This item belongs to

Partition 1

PutItem:

Username:“alexdebrie..”

FirstName: “Alex”

Partition

4

Partition

5

Partition

7

Partition

8

Partition

3

Partition

6

Partition

9Constant time

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Primary key
All access through primary key

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Primary key

Grouped by

partition key

Ordered by sort key

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Partitioning + the DynamoDB API

• Items spread across partitions by partition key

• Single-item actions

• Basic CRUD – PutItem, GetItem, UpdateItem, DeleteItem

• Requires full primary key

• All write operations

• Query operation (composite primary key only)

• Fetch many

• Requires partition key; sort key optional

• Scan

• Fetch all (use sparingly)

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Primary key
All access through primary key

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Primary key
All access through primary key

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Primary key

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Secondary indexes

• Fully managed copies of your data

• Enable additional read-based access patterns

• Two kinds:

• Global secondary indexes (prefer)

• Local secondary indexes (understand before using!)

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What you don’t need to know about DynamoDB

• Paxos vs. Raft

• Two-phase vs. three-phrase commit

• Memory buffer configuration settings

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What you do need to know about DynamoDB

• Partitions + importance of primary key

• API structure

• Single-item actions vs. query vs. scan

• Secondary indexes

• Billing

• Limits

• Pagination mechanics

• Consistency model

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Data modeling basics

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

First, understand your needs

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Before you design your data model

• Know your domain

• What are your constraints?

• What’s your data distribution?

• How big are your items?

• Know your access patterns

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Before you design your data model

• Know your domain

• What are your constraints?

• What’s your data distribution?

• How big are your items?

• Know your access patterns

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Before you design your data model

• Know your domain

• What are your constraints?

• What’s your data distribution?

• How big are your items?

• Know your access patterns

• Know the DynamoDB basics

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Before you design your data model

• Know your domain

• What are your constraints?

• What’s your data distribution?

• How big are your items?

• Know your access patterns

• Know the DynamoDB basics

• Primary key + API + secondary indexes

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Then, design your table for your needs

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Use the basics!

• Single-item actions

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Use the basics!

• Single-item actions

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Use the basics!

• Single-item actions

• Query for "List" operations

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Use the basics!

• Single-item actions

• Query for "List" operations

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Use the basics!

• Single-item actions

• Query for "List" operations

• Secondary indexes for additional read-based patterns

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Use the basics!

• Single-item actions

• Query for "List" operations

• Secondary indexes for additional read-based patterns

• Transactions

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Flexibility vs. efficiency

• Why are you using DynamoDB?

• Predictable performance at enormous scale?

• Migrating a legacy application to DynamoDB?

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Example of modeling relational data in DynamoDB

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/bp-modeling-nosql-B.html

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Flexibility vs. efficiency

• Why are you using DynamoDB?

• Predictable performance at enormous scale?

• Migrating a legacy application to DynamoDB?

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Flexibility vs. efficiency

• Why are you using DynamoDB?

• Predictable performance at enormous scale?

• Migrating a legacy application to DynamoDB?

• Integration with AWS AppSync/GraphQL?

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Flexibility vs. efficiency

• Why are you using DynamoDB?

• Predictable performance at enormous scale?

• Migrating a legacy application to DynamoDB?

• Integration with AWS AppSync/GraphQL?

• Ease of use in serverless architecture?

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Tips for all modeling styles

• Design for your access patterns

• Use meaningful primary keys

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

astute_alex

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Tips for all modeling styles

• Design for your access patterns

• Use meaningful primary keys

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Tips for all modeling styles

• Design for your access patterns

• Use meaningful primary keys

• Don’t needlessly overload item collections

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Friendships

Inventory

Quests

User

astute_alexastute_alex

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Friendships

Quests

User + Inventory

astute_alex

astute_alex#QUEST

astute_alex#FRIENDSHIP

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Tips for all modeling styles

• Design for your access patterns

• Use meaningful primary keys

• Don’t needlessly overload item collections

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Tips for all modeling styles

• Design for your access patterns

• Use meaningful primary keys

• Don’t needlessly overload item collections

• Think about your writes early

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Tips for all modeling styles

• Design for your access patterns

• Use meaningful primary keys

• Don’t needlessly overload item collections

• Think about your writes early

• Use conditional writes

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Tips for all modeling styles

• Design for your access patterns

• Use meaningful primary keys

• Don’t needlessly overload item collections

• Think about your writes early

• Use conditional writes

• Flatten hierarchies

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Tips for all modeling styles

• Design for your access patterns

• Use meaningful primary keys

• Don’t needlessly overload item collections

• Think about your writes early

• Use conditional writes

• Flatten hierarchies

• Denormalize where prudent

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Denormalization

• Embedding

• One-to-one or limited one-to-many relationships

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Denormalization

• Embedding

• One-to-one or limited one-to-many relationships

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Denormalization

• Embedding

• One-to-one or limited one-to-many relationships

• Unbounded one-to-many

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Denormalization

• Embedding

• One-to-one or limited one-to-many relationships

• Unbounded one-to-many

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Denormalization

• Embedding

• One-to-one or limited one-to-many relationships

• Unbounded one-to-many

• Key tradeoff: Item size vs. multiple reads

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Denormalization

• Embedding

• One-to-one or limited one-to-many relationships

• Unbounded one-to-many

• Key tradeoff: Item size vs. multiple reads

• Duplication

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Denormalization

• Embedding

• One-to-one or limited one-to-many relationships

• Unbounded one-to-many

• Key tradeoff: Item size vs. multiple reads

• Duplication

• Key tradeoff: Faster reads vs. harder / more expensive writes

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Denormalization

• Embedding

• One-to-one or limited one-to-many relationships

• Unbounded one-to-many

• Key tradeoff: Item size vs. multiple reads

• Duplication

• Key tradeoff: Faster reads vs. harder / more expensive writes

• Ideal: immutable values

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Denormalization

• Embedding

• One-to-one or limited one-to-many relationships

• Unbounded one-to-many

• Key tradeoff: Item size vs. multiple reads

• Duplication

• Key tradeoff: Faster reads vs. harder / more expensive writes

• Ideal: immutable values

• Benefits:

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Denormalization

• Embedding

• One-to-one or limited one-to-many relationships

• Unbounded one-to-many

• Key tradeoff: Item size vs. multiple reads

• Duplication

• Key tradeoff: Faster reads vs. harder / more expensive writes

• Ideal: immutable values

• Benefits:

• Reducing number of reads (faster + cheaper)

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Denormalization

• Embedding

• One-to-one or limited one-to-many relationships

• Unbounded one-to-many

• Key tradeoff: Item size vs. multiple reads

• Duplication

• Key tradeoff: Faster reads vs. harder / more expensive writes

• Ideal: immutable values

• Benefits:

• Reducing number of reads (faster + cheaper)

• Moving reads from sequential to parallel (faster)

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Napkin math and DynamoDB

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Advanced Napkin Math

Simon Eskildsen, SRECON, Dublin 2019

Source: Simon Eskildsen, Advanced Napkin Math

https://www.usenix.org/conference/srecon19emea/presentation/eskildsen

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Napkin math + DynamoDB base rates

• Performance

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Performance base rates
• Client-side operation latency:

• GetItem/Query: ~5 ms

• PutItem: ~20 ms

• Transaction: 100 ms

• Limits:

• Query response: 1 MB per request

• Hot items: 1000 WCU per second and 3000 RCU per second

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Napkin math + DynamoDB base rates

• Performance

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Napkin math + DynamoDB base rates

• Performance

• Billing

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

DynamoDB billing background

• Traditional databases: CPU, memory, IOPS

• DynamoDB:

• Read Capacity Unit (RCU)

• Write Capacity Unit (WCU)

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Billing base rates

• Capacity units:

• RCU: Up to 4 KB of data read

• Cut in half if not strongly consistent read

• WCU: Up to 1 KB of data written

• Prices:

• 12.5¢ per 1 million RCUs

• 67.5¢ per 1 million WCUs

• $0.25 per GB-month

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Billing base rates

• Capacity units:

• RCU: Up to 4 KB of data read

• Cut in half if not strongly consistent read

• WCU: Up to 1 KB of data written

• Prices*:

• 12.5¢ per 1 million RCUs

• 67.5¢ per 1 million WCUs

• $0.25 per GB-month

* us-east-1 on-demand numbers

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Napkin math + DynamoDB base rates

• Performance

• Billing

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Napkin math + DynamoDB implications

• Performance + billing are separate concerns

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Concurrent queries

R
e

sp
o

n
se

 t
im

e

Saturation

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Concurrent queries

R
e

sp
o

n
se

 t
im

e

Throttling

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Concurrent queries

R
e

sp
o

n
se

 t
im

e

Saturation

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Performance base rates
• Client-side operation latency:

• GetItem/Query: ~5 ms

• PutItem: ~20 ms

• Transaction: 100 ms

• Limits:

• Query response: 1 MB per request

• Hot items: 1000 WCU per second and 3000 RCU per second

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Napkin math + DynamoDB implications

• Performance + billing are separate concerns

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Napkin math + DynamoDB implications

• Performance + billing are separate concerns

• DynamoDB pricing should affect how you build applications

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Billing base rates

• Capacity units:

• RCU: Up to 4 KB of data read (cut in half if not strongly consistent read)

• WCU: Up to 1 KB of data written

• Prices*:

• 12.5¢ per 1 million RCUs

• 67.5¢ per 1 million WCUs

• $0.25 per GB-month

* us-east-1 numbers

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Advanced napkin math: WCU + RCU multipliers

• Item size

• Secondary indexes

• Transactions

• Global tables

• Consistent read

Larger items require more resources

More writes

Coordination

Replication infra + conflict resolution

Requires routing to leader

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Mind your multipliers!

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Mind your multipliers

• Review item sizes carefully

• Remove unused attributes

• Compress large values (or send to Amazon S3)

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Mind your multipliers

• Review item sizes carefully

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Mind your multipliers

• Review item sizes carefully

• Limit secondary indexes

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Mind your multipliers

• Review item sizes carefully

• Limit secondary indexes

• Do you need a secondary index? Writes are ~20x more than reads

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Mind your multipliers

• Review item sizes carefully

• Limit secondary indexes

• Do you need a secondary index? Writes are ~20x more than reads

• Use projections to limit size of items in the index

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Mind your multipliers

• Review item sizes carefully

• Limit secondary indexes

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Mind your multipliers

• Review item sizes carefully

• Limit secondary indexes

• Limit transactions

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Mind your multipliers

• Review item sizes carefully

• Limit secondary indexes

• Limit transactions

• Ensure that you need global tables

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Mind your multipliers

• Review item sizes carefully

• Limit secondary indexes

• Limit transactions

• Ensure that you need global tables

• Don’t use consistent reads

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Napkin math + DynamoDB implications

• Performance + billing are separate concerns

• DynamoDB pricing should affect how you build applications

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Amazon DynamoDB Streams

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Inserts

Updates

Deletes
[Batch of records]

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

DynamoDB Streams use cases

• Solving the dual-write problem

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

The dual-write problem

PutItem

CustomerEmail: …

OrderId: …

PutEvents

Type: OrderCreated

OrderId: ….

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

The dual-write problem

PutItem

CustomerEmail: …

OrderId: …

Inserts

Updates

Deletes

[Batch of records]

PutEvents

Type: OrderCreated

OrderId: ….

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Tips for DynamoDB Streams

• Clean up your events before pushing elsewhere

• Consumer stream limit

• Raw event format

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

{
 "eventID":"c4ca4238a0b923820dcc509a6f75849b",
 "eventName": "INSERT",
 "eventVersion": "1.1",
 "eventSource": "aws:dynamodb",
 "awsRegion": "us-east-1",
 "dynamodb":
 {
 "ApproximateCreationDateTime": 1628899200,
 "Keys":
 { "id": { "S": "123456789" } },
 "NewImage": {
 "id": { "S": "123456789" },
 "name": { "S": "John Doe" },
 "email": { "S": "john.doe@example.com" },
 "createdAt": { "N": "1628899200" } },
 "SequenceNumber": "4421584500000000017...",
 "SizeBytes": 26,
 "StreamViewType": "NEW_AND_OLD_IMAGES" },
 "eventSourceARN": "arn:aws:dynamodb:..." }
 }
}

{
 "type": "USER_CREATED",
 "timestamp": 1628899200000,
 "version": "1.0",
 "data": {
 "userId": "123456789",
 "name": "John Doe",
 "email": "john.doe@example.com",
 "createdAt": 1628899200000 },
 },
 "metadata": {
 "source": "dynamodb",
 "region": "us-east-1",
 "streamId": "4421584500000000017450439091"
 }
}

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Tips for DynamoDB Streams

• Clean up your events before pushing elsewhere

• Consumer stream limit

• Raw event format

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Tips for DynamoDB Streams

• Clean up your events before pushing elsewhere

• Consumer stream limit

• Raw event format

• Understand stream processing mechanics + failure modes

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Tips for DynamoDB Streams

• Clean up your events before pushing elsewhere

• Consumer stream limit

• Raw event format

• Understand stream processing mechanics + failure modes

• Kafka/Amazon Kinesis

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Tips for DynamoDB Streams

• Clean up your events before pushing elsewhere

• Consumer stream limit

• Raw event format

• Understand stream processing mechanics + failure modes

• Kafka/Amazon Kinesis

• Consider your stream implementation carefully

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Tips for DynamoDB Streams

• Clean up your events before pushing elsewhere

• Consumer stream limit

• Raw event format

• Understand stream processing mechanics + failure modes

• Kafka/Amazon Kinesis

• Consider your stream implementation carefully

• DynamoDB Streams: fully managed, better guarantees, but max 2 consumers

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Tips for DynamoDB Streams

• Clean up your events before pushing elsewhere

• Consumer stream limit

• Raw event format

• Understand stream processing mechanics + failure modes

• Kafka/Amazon Kinesis

• Consider your stream implementation carefully

• DynamoDB Streams: fully managed, better guarantees, but max 2 consumers

• Kinesis Streams: more consumers but more management + cost

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

DynamoDB Streams use cases

• Solving the dual-write problem

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

DynamoDB Streams use cases

• Solving the dual-write problem

• Exporting to secondary system

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Good at:

• Classic OLTP workloads

Bad at:

• Flexible workloads

• Small reads + writes

• Transactions

• Conditional writes

• Low latency/high availability

• Analytics/aggregations

• Complex filtering

• Full-text search

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Complexities with syncing to external system

• Initial export

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

How to get initial data into

external system?

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

DynamoDB export

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

1. Enable DynamoDB Streams

2. Export to Amazon S3 3. Load to external

system

4. Consume

stream

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Complexities with syncing to external system

• Initial export

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Complexities with syncing to external system

• Initial export

• OLTP/OLAP impedance mismatch

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

1. Enable DynamoDB Streams

2. Export to Amazon S3 3. Load to external

system

4. Consume

stream

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

DynamoDB Streams use cases

• Solving the dual-write problem

• Exporting to secondary system

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

DynamoDB Streams use cases

• Solving the dual-write problem

• Exporting to secondary system

• Triggers + stored procedures

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Trigger use case: Array indexing

• Example: Issue tracking system

• Projects have issues

• Issues have tags

• Release version

• Type (feature vs. bugfix vs. enhancement vs. tech debt vs. documentation)

• Component (frontend vs. backend vs. database vs. auth)

• Goal: Allow for tag-based search

• feature + auth + sprint-23

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Can I brute force it?

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Issue tracking: Napkin math

•

•

•

•

•

•

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Issue tracking: Napkin math

• Issue item size: 1–5 KB

•

•

•

•

•

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Issue tracking: Napkin math

• Issue item size: 1–5 KB

• Issues per project:

•

•

•

•

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Issue tracking: Napkin math

• Issue item size: 1–5 KB

• Issues per project:

• Median: 1000

•

•

•

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Issue tracking: Napkin math

• Issue item size: 1–5 KB

• Issues per project:

• Median: 1000

• P95: >10,000

•

•

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Issue tracking: Napkin math

• Issue item size: 1–5 KB

• Issues per project:

• Median: 1000

• P95: >10,000

Brute-force calculations:

•

•

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Issue tracking: Napkin math

• Issue item size: 1–5 KB

• Issues per project:

• Median: 1000

• P95: >10,000

Brute-force calculations:

• Median: 2 KB * 1000 == 2 MB (2 requests + 500 RCUs)

•

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Issue tracking: Napkin math

• Issue item size: 1–5 KB

• Issues per project:

• Median: 1000

• P95: >10,000

Brute-force calculations:

• Median: 2 KB * 1000 == 2 MB (2 requests + 500 RCUs)

• P95: 5 KB * 10,000 == 50 MB (50 requests + 12,500 RCUs)

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Issue tracking: Napkin math

• Issue item size: 1–5 KB

• Issues per project:

• Median: 1000

• P95: >10,000

Brute-force calculations:

• Median: 2 KB * 1000 == 2 MB (2 requests + 500 RCUs)

• P95: 5 KB * 10,000 == 50 MB (50 requests + 12,500 RCUs)

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Array indexing with streams

Create/Update

 Issue

[Batch of records]

Insert/Update

IssuesByTags

Issues table

IssuesByTag table

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Find issues with tags: feature + auth + sprint-23

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Issue tracking: Napkin math part 2

• Tags per query: 3

• Issue item size: 200 bytes

• Issues per tag

• Median: 10

• P95: 200

Calculations:

• Median: 200 * 10 == 2 KB (1 RCU) * 3 requests == 3 RCUs

• P95: 200 * 200 == 40 KB (10 RCUs) * 3 requests == 30 RCUs

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Issue tracking + denormalization

• Embedding

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Issue tracking + denormalization

• Embedding

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Issue tracking + denormalization

• Embedding

• Duplication

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Issue tracking + denormalization

• Embedding

• Duplication

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Issue tracking + denormalization

• Embedding

• Duplication

Further consideration – how much to duplicate?

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Find issues with tags: feature + auth + sprint-23

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Issue tracking + denormalization

• More duplication:

• Benefits: Fewer read operations/lower latency

• Downside: Higher write cost/maintenance

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Other trigger + stored procedure use cases

• Maintaining aggregations

• Tracking version histories

• Hierarchical rollups

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

DynamoDB Streams use cases

• Solving the dual-write problem

• Exporting to secondary system

• Triggers + stored procedures

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Make it Dynamo

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Make it Dynamo

• Basics first

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Tips for all modeling styles

• Design for your access patterns

• Use meaningful primary keys

• Don’t needlessly overload item collections

• Think about your writes early

• Use conditional writes

• Flatten hierarchies

• Denormalize where prudent

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Make it Dynamo

• Basics first

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Make it Dynamo

• Basics first

• Use the building blocks

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Array indexing with streams

Create/Update

 Issue

[Batch of records]

Insert/Update

IssuesByTags

Issues table

IssuesByTag table

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Issue tracking: Napkin math part 2

• Tags per query: 3

• Issue item size: 200 bytes

• Issues per tag

• Median: 10

• P95: 200

Calculations:

• Median: 200 * 10 == 2 KB (1 RCU) * 3 requests == 3 RCUs

• P95: 200 * 200 == 40 KB (10 RCUs) * 3 requests == 30 RCUs

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Issue tracking + denormalization

• Embedding

• Duplication

Further consideration – how much to duplicate?

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Make it Dynamo

• Basics first

• Use the building blocks

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Make it Dynamo

• Basics first

• Use the building blocks

• Secondary system when necessary

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

1. Enable DynamoDB Streams

2. Export to Amazon S3 3. Load to external

system

4. Consume

stream

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Make it Dynamo

• Basics first

• Use the building blocks

• Secondary system when necessary

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Make it Dynamo

• Basics first

• Use the building blocks

• Secondary system when necessary

• Split + sort are surprisingly powerful!

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Primary key

Grouped by

partition key

Ordered by sort key

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Split + sort

• Group by high cardinality

• TenantID, UserEmail, DeviceID

• Sort by meaningful value

• Timestamp, VersionId, ULID/UUIDv7

This can be used in surprising ways!

• Geohashing

• IP lookup

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Make it Dynamo

• Basics first

• Use the building blocks

• Secondary system when necessary

• Split + sort are surprisingly powerful!

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Thank you!

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Please complete the session
survey in the mobile app

Alex DeBrie

@alexbdebrie

alexdebrie1@gmail.com

	Layouts
	Slide 1
	Slide 2: Advanced data modeling with Amazon DynamoDB
	Slide 3: Previously at re:Invent
	Slide 4: Related talks
	Slide 5: Agenda
	Slide 6: Alex DeBrie
	Slide 7: DynamoDB background
	Slide 8
	Slide 9: Mechanical sympathy is when you use a tool or system with an understanding of how it operates best.
	Slide 10: Key characteristics
	Slide 11: DynamoDB – High level architecture
	Slide 12: Key characteristics
	Slide 13: Key characteristics
	Slide 14: Key characteristics
	Slide 15: Key characteristics
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20: Partitioning + the DynamoDB API
	Slide 21
	Slide 22
	Slide 23
	Slide 24: Secondary indexes
	Slide 25
	Slide 26: What you don’t need to know about DynamoDB
	Slide 27: What you do need to know about DynamoDB
	Slide 28: Data modeling basics
	Slide 29
	Slide 30: Before you design your data model
	Slide 31
	Slide 32
	Slide 33: Before you design your data model
	Slide 34: Before you design your data model
	Slide 35: Before you design your data model
	Slide 36
	Slide 37: Use the basics!
	Slide 38
	Slide 39: Use the basics!
	Slide 40: Use the basics!
	Slide 41
	Slide 42: Use the basics!
	Slide 43: Use the basics!
	Slide 44: Use the basics!
	Slide 45: Flexibility vs. efficiency
	Slide 46
	Slide 47: Flexibility vs. efficiency
	Slide 48: Flexibility vs. efficiency
	Slide 49: Flexibility vs. efficiency
	Slide 50: Tips for all modeling styles
	Slide 51
	Slide 52: Tips for all modeling styles
	Slide 53: Tips for all modeling styles
	Slide 54
	Slide 55
	Slide 56: Tips for all modeling styles
	Slide 57: Tips for all modeling styles
	Slide 58: Tips for all modeling styles
	Slide 59: Tips for all modeling styles
	Slide 60: Tips for all modeling styles
	Slide 61: Denormalization
	Slide 62
	Slide 63: Denormalization
	Slide 64: Denormalization
	Slide 65
	Slide 66: Denormalization
	Slide 67: Denormalization
	Slide 68: Denormalization
	Slide 69: Denormalization
	Slide 70: Denormalization
	Slide 71: Denormalization
	Slide 72: Denormalization
	Slide 73: Denormalization
	Slide 74: Napkin math and DynamoDB
	Slide 75
	Slide 76: Napkin math + DynamoDB base rates
	Slide 77: Performance base rates
	Slide 78: Napkin math + DynamoDB base rates
	Slide 79: Napkin math + DynamoDB base rates
	Slide 80: DynamoDB billing background
	Slide 81: Billing base rates
	Slide 82: Billing base rates
	Slide 83: Napkin math + DynamoDB base rates
	Slide 84: Napkin math + DynamoDB implications
	Slide 85
	Slide 86
	Slide 87
	Slide 88: Performance base rates
	Slide 89: Napkin math + DynamoDB implications
	Slide 90: Napkin math + DynamoDB implications
	Slide 91: Billing base rates
	Slide 92: Advanced napkin math: WCU + RCU multipliers
	Slide 93
	Slide 94: Mind your multipliers
	Slide 95: Mind your multipliers
	Slide 96: Mind your multipliers
	Slide 97: Mind your multipliers
	Slide 98: Mind your multipliers
	Slide 99: Mind your multipliers
	Slide 100: Mind your multipliers
	Slide 101: Mind your multipliers
	Slide 102: Mind your multipliers
	Slide 103: Napkin math + DynamoDB implications
	Slide 104: Amazon DynamoDB Streams
	Slide 105
	Slide 106: DynamoDB Streams use cases
	Slide 107: The dual-write problem
	Slide 108: The dual-write problem
	Slide 109: Tips for DynamoDB Streams
	Slide 110
	Slide 111: Tips for DynamoDB Streams
	Slide 112: Tips for DynamoDB Streams
	Slide 113: Tips for DynamoDB Streams
	Slide 114: Tips for DynamoDB Streams
	Slide 115: Tips for DynamoDB Streams
	Slide 116: Tips for DynamoDB Streams
	Slide 117: DynamoDB Streams use cases
	Slide 118: DynamoDB Streams use cases
	Slide 119
	Slide 120: Good at:
	Slide 121
	Slide 122: Complexities with syncing to external system
	Slide 123
	Slide 124: DynamoDB export
	Slide 125
	Slide 126: Complexities with syncing to external system
	Slide 127: Complexities with syncing to external system
	Slide 128
	Slide 129
	Slide 130: DynamoDB Streams use cases
	Slide 131: DynamoDB Streams use cases
	Slide 132: Trigger use case: Array indexing
	Slide 133
	Slide 134
	Slide 135: Issue tracking: Napkin math
	Slide 136: Issue tracking: Napkin math
	Slide 137: Issue tracking: Napkin math
	Slide 138: Issue tracking: Napkin math
	Slide 139: Issue tracking: Napkin math
	Slide 140: Issue tracking: Napkin math
	Slide 141: Issue tracking: Napkin math
	Slide 142: Issue tracking: Napkin math
	Slide 143: Issue tracking: Napkin math
	Slide 144: Array indexing with streams
	Slide 145
	Slide 146: Issue tracking: Napkin math part 2
	Slide 147: Issue tracking + denormalization
	Slide 148
	Slide 149: Issue tracking + denormalization
	Slide 150: Issue tracking + denormalization
	Slide 151
	Slide 152: Issue tracking + denormalization
	Slide 153: Issue tracking + denormalization
	Slide 154
	Slide 155
	Slide 156: Issue tracking + denormalization
	Slide 157: Other trigger + stored procedure use cases
	Slide 158: DynamoDB Streams use cases
	Slide 159: Make it Dynamo
	Slide 160: Make it Dynamo
	Slide 161: Tips for all modeling styles
	Slide 162: Make it Dynamo
	Slide 163: Make it Dynamo
	Slide 164: Array indexing with streams
	Slide 165: Issue tracking: Napkin math part 2
	Slide 166: Issue tracking + denormalization
	Slide 167: Make it Dynamo
	Slide 168: Make it Dynamo
	Slide 169
	Slide 170: Make it Dynamo
	Slide 171: Make it Dynamo
	Slide 172
	Slide 173: Split + sort
	Slide 174: Make it Dynamo
	Slide 175

