ANNTASS

e [Nvent

DECEMBER 2 - 6, 2024 | LAS VEGAS, NV

DAT4O4

Advanced data modeling with
Amazon DynamoDB

Alex DeBrie

AWS Data Hero
Principal
DeBrie Advisory

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

l :
Previously at re:Invent

- 2023: Airline reservations (complex filtering, maintaining
constraints)

« 2022: MMORPG (architecture, constraints, transactions)

- 2021: Ecommerce (primary keys, write operations)

| Related talks

- DAT305: Data modeling core concepts for Amazon DynamoDB
- DAT406: Deep dive into Amazon DynamoDB

« DAT419: An insider’'s look into architecture choices for
Amazon DynamoDB

Agenda

- Background

- Data modeling basics

« DynamoDB + napkin math

« Using Amazon DynamoDB Streams

- Make it Dynamo

aWS’ © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

I Alex DeBrie

« AWS Data Hero
 Independent consultant
« Author, The DynamoDB Book

dynamodbbook.com

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

c. or its affiliates. All rights reserved.

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Mechanical sympathy is when
you use a tool or system with/
an understanding of how it /
operates best.

AWS Well-Architected Framework

https://wa.aws.amazon.com/wellarchitected/2020-07-02T19-33-23/wat.concept.mechanical-sympathy.en.html
https://wa.aws.amazon.com/wellarchitected/2020-07-02T19-33-23/wat.concept.mechanical-sympathy.en.html

l i
Key characteristics

« Fully managed and proprietary to AWS

I DynamoDB - H|gh level architecture

Clients

aws

dynamodb . [4a=:4KeJsbs . amazonaws . com

Regional Endpoint

o ® W Gy GGG G

az3 | =FD : ’i{ it : : !

- B TEEY
> -« :Eﬁﬂ L [_1 [_-| - : :

0 1o 0| {5 Ls Ls Lo Lo

AZ-2 < me‘ Pt 14 e

. B D000 0

g T MW oo 00

K e

i i Jh_]D‘— Metadata, i::% %:ué fé {:% i::é

Load Balancers

Request Routers

Partition Maps,

Auto-Admin,
Transaction
Coordinator

Storage Nodes

l i
Key characteristics

« Fully managed and proprietary to AWS

l i
Key characteristics

« Fully managed and proprietary to AWS
- Consistent performance at any scale

l i
Key characteristics

« Fully managed and proprietary to AWS
- Consistent performance at any scale
- Serverless-friendly

l i
Key characteristics

« Fully managed and proprietary to AWS
- Consistent performance at any scale
- Serverless-friendly

aws

S

Primary key

Partition key: Username

alexdebrie

boss_matt

product_joe

algo_amrith

FirstName

Alex

FirstName

Matt

FirstMame

Joe

FirstName

Amrith

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

LastName

DeBrie

LastName

Garman

LastName

|dziorek

LastName

Kumar

Attributes

UserPreferences

{ "darkMode™ true, "timezone": "America/Chicago" }

UserPreferences

{ "isAdmin": true, "timezone": "America/Los_Angeles" }

UserPreferences
{ "darkMode™ true, "timezone": "America/Los_Angeles" }
UserPreferences

{ "timezone": "America/New_York" }

TeamName
AWS Heroes
TeamMame
5-Team

TeamName
DynamoDB
TeamMName

DynamoDB

Putitem:

Username:“alexdebrie..” e
FirstName: “Alex” S

—

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

fx(Username):
This item belongs to
Partition 1

C

Partition
1

SRR

-

Partition
2

R e

3

Partition
3

NSl

@c

Partition
4

S

«@i

Partition
5

SN

3

Partition
6

NSO

e

Partition
7

N SN

o

Partition
8

P A e ol

i

Partition
9

LR

aws

S

Primary key

Partition key: Username

alexdebrie

boss_matt

product_joe

algo_amrith

FirstName

Alex

FirstName

Matt

FirstMame

Joe

FirstName

Amrith

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

LastName

DeBrie

LastName

Garman

LastName

|dziorek

LastName

Kumar

Attributes

UserPreferences

{ "darkMode™ true, "timezone": "America/Chicago" }

UserPreferences

{ "isAdmin": true, "timezone": "America/Los_Angeles" }

UserPreferences
{ "darkMode™ true, "timezone": "America/Los_Angeles" }
UserPreferences

{ "timezone": "America/New_York" }

TeamName
AWS Heroes
TeamMame
5-Team

TeamName
DynamoDB
TeamMName

DynamoDB

Primary key

Partition key: Username

Grouped by
partition key

alexdebrie

product_joe

algo_amrith

Sort key: Orderid

Ordered by sort key

PTHNZNG5QDMB4014EWZ0R54VY4

TJCFeZIATXZRXTEGTDKXT111Y

TIWIMSACQEBGNEB263Z7X4857R

OTKSRMS988AHOPTZYHPAKZS3FF

0TJ2YKVTEeS0CZEDBXSYCZXVOSE

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

S

OrderCreatedAt

2024-02-06T16:54:55.981Z

OrderCreatedAt

2024-11-12T03:34:07.450Z

OrderCreatedAt

2025-05-14T14:48:19.6072Z

OrderCreatedAt

2025-09-22T11:52:28.168Z

OrderCreatedAt

2024-07-16T20:31:09.5292Z

Attributes

OrderStatus

Cancelled

OrderStatus

Delivered

OrderStatus

Placed

OrderStatus

Delivered

OrderStatus

Delivered

OrderAmount

34.99

OrderAmount

172.14

OrderAmount

94.35

OrderAmount

237.44

OrderAmount

371.64

Partitioning + the DynamoDB API

 |tems spread across partitions by partition key
 Single-item actions
« Basic CRUD - Putltem, Getltem, Updateltem, Deleteltem
- Requires full primary key
- All write operations
« Query operation (composite primary key only)
« Fetch many
Requires partition key; sort key optional
« Scan
« Fetch all (use sparingly)

aWS’ © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

aws

S

Primary key

Partition key: Username

alexdebrie

boss_matt

product_joe

algo_amrith

FirstName

Alex

FirstName

Matt

FirstMame

Joe

FirstName

Amrith

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

LastName

DeBrie

LastName

Garman

LastName

|dziorek

LastName

Kumar

Attributes

UserPreferences

{ "darkMode™ true, "timezone": "America/Chicago" }

UserPreferences

{ "isAdmin": true, "timezone": "America/Los_Angeles" }

UserPreferences
{ "darkMode™ true, "timezone": "America/Los_Angeles" }
UserPreferences

{ "timezone": "America/New_York" }

TeamMame

AWS Heroes

TeamMName

S5-Team

TeamMame

DynamoDB

TeamMName

DynamoDB

aws

S

Primary key

Partition key: Username

alexdebrie

boss_matt

product_joe

algo_amrith

FirstName

Alex

FirstName

Matt

FirstMame

Joe

FirstName

Amrith

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

LastName

DeBrie

LastName

Garman

LastName

|dziorek

LastName

Kumar

Attributes

UserPreferences

{ "darkMode™ true, "timezone": "America/Chicago" }

UserPreferences

{ "isAdmin": true, "timezone": "America/Los_Angeles" }

UserPreferences
{ "darkMode™ true, "timezone": "America/Los_Angeles" }
UserPreferences

{ "timezone": "America/New_York" }

TeamName
AWS Heroes
TeamMame
5-Team

TeamName
DynamoDB
TeamMName

DynamoDB

aws

S

Primary key

Primary key

Partition key: TeamName pyf: Username

AWS Heroes alexdebfie

boss_matt

algo_amrith
DynamoDB

product_joe

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

FirstName

Alex

FirstName

Matt

FirstName

Amrith

FirstName

Joe

Attributes

LastName

DeBrie

LastName

Garman

LastName

Kumar

LastName

ldziorek

I
Secondary indexes

- Fully managed copies of your data
- Enable additional read-based access patterns

« Two kinds:
Global secondary indexes (prefer)
Local secondary indexes (understand before using!)

aWS’ © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

What you don’t need to know about DynamoDB

Paxos vs. Raft
Two-phase vs. three-phrase commit
Memory buffer configuration settings

What you do need to know about DynamoDB

- Partitions + importance of primary key
« API structure

Single-item actions vs. query vs. scan
- Secondary indexes
- Billing
« Limits
- Pagination mechanics
« Consistency model

c. or its affiliates. All rights reserved.

First, understand your needs

aws
2

I
Before you design your data model

« Know your domain
- What are your constraints?
« What's your data distribution?
« How big are your items?

- Know your access patterns

aWS’ © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Access patterns

Write access patterns

Write pattern Item(s) altered Condition(s) Frequency

Create User

Increase Gold
for User

Add Inventory
to User

Remove

Inventory for
User

Add User to
Guild

Create Quest
for User

Mark Quest
Completed for
User

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

Read access patterns

Pattern Operation Filters / Projections

Get User

Fetch Inventory
for User

Fetch Users by
Guild

Get Quest
Details by User
and ID

Fetch Quests
for User

Fetch
Completed
Quests for
Users

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

I
Before you design your data model

« Know your domain
- What are your constraints?
« What's your data distribution?
« How big are your items?

- Know your access patterns

aWS’ © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

I
Before you design your data model

« Know your domain
What are your constraints?
What's your data distribution?
How big are your items?

- Know your access patterns
« Know the DynamoDB basics

aWS’ © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

I
Before you design your data model

« Know your domain
What are your constraints?
What's your data distribution?
How big are your items?

- Know your access patterns
« Know the DynamoDB basics

Primary key + API + secondary indexes

aWS’ © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

Then, design your table for your needs

aws
2

| Use the basics!

Single-item actions

aWS’ © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

Read access patterns

Pattern Operation Filters / Projections

Get User

Fetch Inventory
for User

Fetch Users by
Guild

Get Quest
Details by User /
and ID

Fetch Quests
for User

Fetch
Completed
Quests for
Users

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

| Use the basics!

Single-item actions

aWS’ © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

| Use the basics!

« Single-item actions
« Query for "List" operations

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

Read access patterns

Pattern Operation Filters / Projections

Get User

Fetch Inventory
for User

Fetch Users by
Guild

Get Quest
Details by User
and ID

Fetch Quests
for User

Fetch
Completed
Quests for
Users

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

| Use the basics!

« Single-item actions
« Query for "List" operations

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

| Use the basics!

« Single-item actions
« Query for "List" operations
- Secondary indexes for additional read-based patterns

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

| Use the basics!

« Single-item actions

« Query for "List" operations

- Secondary indexes for additional read-based patterns
« Transactions

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

l
Flexibility vs. efficiency

« Why are you using DynamoDB?
- Predictable performance at enormous scale?
- Migrating a legacy application to DynamoDB?

aWS’ © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

aws

S

Primary Key

Attributes

5K (GSI-1-PK)

G5I-1-5K

HR-EMPLOYEE1

EMPLOYEE1

Data (Full Name)

StartDate

EndDate

JoblD

JobTitle PhoneNumber

Email

Region

Department

John Smith

QUOTA-2017-Q1

Data (Order Totals USD)

EmployeeName

50000

HR-CONFIDENTIAL

Data (Hire Date)

EmployeeName

2015-11-08

WA | SEATTLE

Data (Desk Location)

EmployeeName

BO1|F07|A27|ROS

John Smith

J-AM3

Data (Job Title)

DepartmentlD

StartDate

EndDate

Principal Account Manager

JH-AM2

Data (Job Title)

DepartmentlD

StartDate

EndDate

Senior Account Manager

JH-AM1

Data (Job Title)

DepartmentlD

StartDate

EndDate

Account Manager

HR-REGION1

PNW

Data (Region Name)

RegionName

Pacific Northwest Territory

HR-COUNTRY1

USA

Data (Country Name)

CountryName

RegionlD

United States

HR-LOCATION1

HR OE TABLE

WA | SEATTLE

Data (City State)

CityName

PostalCode

StreetAddress

StateProvince |CountrylD

Seattle, Washington

HR-JOB1

J-AM3

Data (Job Title)

JobTitle

MinSalary

MaxSalary

Principal Account Manager

HR-DEPARTMENT1

COMMERCIAL

Data (Department Name)

DepartmentName

ManagerlD

City

Location

Commercial Sales

EMPLOYEE2

OE-CUSTOMER1

CUSTOMER1

Data (Customer Name)

Address

IncomelLevel

PhoneNumber

NLSL NLSTerritory

CreditLimit

CustEmail

CustLocatid

DateOfBirth

MaritalStatus

Gender

ACE Building Supplies

OE-ORDER1

CUSTOMERL

Data (StatusDate) (GSI-2-SK)

GSl-Bucket (GSI-2-PK)

SalesReplD

AccountManager

OrderMode OrderTotal

PromotionID

OPEN#2018 08_11

RND(0,N)

EMPLOYEEL

EMPLOYEE1

Data (StatusDate)

Order Total

OPEN#2018 08_11

2500

PRODUCT1

Data (StatusDate) (GSI-2-SK)

GSl-Bucket (GSI-2-PK)

OrderQuantity

UnitPrice

OPEN#2018 08_11

RND(0,N)

OE-PRODUCT1

PRODUCT1

Data (Product Name)

ProductDescription

WAREHOUSE1

WAREHOUSE2

CategorylD WeightClass

WarranytPeri

SupplierlD

ProductSta

ListPrice

MinPrice

CatalogURL

Quickcrete Cement - 50 Ib bag

InventoryQty

InventoryQty

PNW

Data (Region Name)

TranslatedName

Description

Pacific Northwest

TRANSLATED_NAME

OE-WAREHOUSEL

Data (Warehouse Type)

WarehouseSpec

Location

WHGeolocation

Building Supplies

Example of modeling relational data in DynamoDB

https://docs.aws.amazon.com/amazondynamodb/latest/develope

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

guide/bp-modeling-nosql-B.html

l
Flexibility vs. efficiency

« Why are you using DynamoDB?
- Predictable performance at enormous scale?
- Migrating a legacy application to DynamoDB?

aWS’ © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Flexibility vs. efficiency

« Why are you using DynamoDB?
Predictable performance at enormous scale?
Migrating a legacy application to DynamoDB?
Integration with AWS AppSync/GraphQL?

aWS’ © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

l
Flexibility vs. efficiency

« Why are you using DynamoDB?
- Predictable performance at enormous scale?
- Migrating a legacy application to DynamoDB?
- Integration with AWS AppSync/GraphQL?
- Ease of use in serverless architecture?

aWS’ © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

| Tips for all modeling styles

 Design for your access patterns
Use meaningful primary keys

Primary key
Attributes
Partition key: Username

Class Inventory TotalPlayTime Guild
amazing_amrith
Mage [{ "Type": "Weapon”, "Name": "Sword of Partitioning" }] 892341 DynamoDestroyers

Class Inventory TotalPlayTime Guild
astute_alex
Bard [{ "Type": "Armor", "Name": "Shield of Sharding” } ...] 629831 HelpingHeroes

Class Inventory TotalPlayTime Guild
jumping_janelle
Paladin [{ "Type": "Weapon", "Name": "Arrow of Availability" } ...] 23483 DynamoDestroyers

Class Inventory TotalPlayTime Guild
calming_chad
Priest [{ "Type": "Potion", "Name": "Potion of Understanding” } ...] 42786 DynamoDestroyers

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

| Tips for all modeling styles

 Design for your access patterns
Use meaningful primary keys

| Tips for all modeling styles

- Design for your access patterns
Use meaningful primary keys
Don’t needlessly overload item collections

aWS’ © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

Partition key: PK

astute_alex

aws

S

Primary key

Sort key: SK

FRIENDSHIP#amazing_amrith

FRIENDSHIP#jumping_janelle

FriendshipCreatedAt
2023-04-12 12:35:32
FriendshipCreatedAt

2023-06-19 15:44:21

Friendships

INVENTORY

Inventory

[{"Type": "Armor", "Name": "Shield of Sharding"}, ...]

Attributes

Inventory

QUESTH#O1GGFGEBCCVEETCS9EVITMNSES2

QUEST#01GGFGSQH4BODPO4CYPIXWBDYG

QUESTH#O1GGFGCNPES703VRS396PEBROXO

User

QuestName

A Lost Cause

QuestName

Sole Survivor

QuestName

Answer the Call

Class

Bard

QuestStartedAt

2022-08-22 19:19:12

QuestStartedAt

2022-05-18-21:09:20

QuestStartedAt

2022-10-19 20:30:14

Gold

247

QuestCompletedAt
2022-05-21 19:33:41
QuestCompletedAt
2022-10-20 22:16:24
TotalPlayTime

629831

Guild

HelpingHeroes

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Primary key

Partition key: PK Sort key: 5K

Attributes

INVENTORY

astute alex

Inventory

[{ "Type™ "Armor”, "Mame": "Shield of Sharding™ }, ...

Class

Bard

1
Gold

247

User + Inventory

TotalPlayTime

629831

Guild

HelpingHeroes

01GGFGBCCVEEVCS9EV77MNSE92

astute_alex#QUEST 01GGFGSQH4BODPO4CYPIXWBD? G

01GGFGCNPESTO3VR9396PEROX0

amazing_amrith

astute_alex#FRIENDSHIP

jumping_janelle

QuestMName

A Lost Cause
QuestMName

Sole Survivor
QuestMame

Answer the Call
FriendshipCreatedAt

2023-04-12 12:35:32

Friendships

FriendshipCreatedAt

2023-06-19 15:44:21

QuestStartedAt

2022-08-22 19:19:12

QuestStartedAt

2022-05-18-21:05:20

QuestStartedAt

2022-10-19 20:30:14

QuestCompletedAt
2022-05-21 19:33:41
QuestCompletedAt

2022-10-20 22:16:24

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

| Tips for all modeling styles

- Design for your access patterns
Use meaningful primary keys
Don’t needlessly overload item collections

aWS’ © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

| Tips for all modeling styles

- Design for your access patterns
Use meaningful primary keys
Don’t needlessly overload item collections

« Think about your writes early

aWS’ © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

l
Tips for all modeling styles

- Design for your access patterns
Use meaningful primary keys
Don’t needlessly overload item collections

« Think about your writes early

Use conditional writes

aWS’ © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

l
Tips for all modeling styles

- Design for your access patterns
Use meaningful primary keys
Don’t needlessly overload item collections

« Think about your writes early
Use conditional writes

« Flatten hierarchies

aWS’ © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

| Tips for all modeling styles

- Design for your access patterns
Use meaningful primary keys
Don’t needlessly overload item collections

« Think about your writes early
Use conditional writes

« Flatten hierarchies

Denormalize where prudent

aWS’ © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

Denormalization

- Embedding

- ® One-to-one or limited one-to-many relationships

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

aws

S

Primary key

Partition key: Username

alexdebrie

boss_matt

product_joe

algo_amrith

FirstName

Alex

FirstName

Matt

FirstMame

Joe

FirstName

Amrith

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

LastName

DeBrie

LastName

Garman

LastName

|dziorek

LastName

Kumar

Attributes

serPreferences

{ "darkMode™ true, "timezone": "America/Chicago" }

UserPreferences

{ "isAdmin": true, "timezone": "America/Los_Angeles" }

UserPreferences
{ "darkMode™ true, "timezone": "America/Los_Angeles" }
UserPreferences

{ "timezone": "America/New_York" }

TeamName
AWS Heroes
TeamMame
5-Team

TeamName
DynamoDB
TeamMName

DynamoDB

Denormalization

- Embedding

- ® One-to-one or limited one-to-many relationships

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

Denormalization

- Embedding

- ® One-to-one or limited one-to-many relationships
- © Unbounded one-to-many

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

aws

S

Primary key
Partition key: Username

FirstName
alexdebrie
Alex

FirstName
boss_matt
Matt

FirstName
product_joe
Joe

FirstName
algo_amrith
Amrith

LastName

DeBrie

LastName

Garman

LastName

ldziorek

LastMName

Kumar

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Attributes

UserPreferences
{ "darkMode™ true, "timezone™ "America/Chicago” }

UserPreferences

{ "isAdmin": true, "timezone": "America/Los_Angeles" }

UserPreferences
{ "darkMode™ true, "timezone™ "America/Los_Angeles" }
UserPreferences

{ "timezone": "America/Mew_York" }

TeamName
AWS Heroes
TeamName
5-Team

TeamName
DynamoDB
TeamName

DynamoDB

[{ "Orderld™

Orders
[{ "Orderld™
Orders

[{ "Orderld™

"OTHN....", "Amount™: "34.99" } ...]

"01K5....", "Amount™ "237.44" } ...]

"01J2..." "Amount": "311.64" } ...]

Denormalization

- Embedding

- ® One-to-one or limited one-to-many relationships
- © Unbounded one-to-many

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

Denormalization

- Embedding
- ® One-to-one or limited one-to-many relationships
- © Unbounded one-to-many
- Key tradeoff: Item size vs. multiple reads

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

Denormalization

- Embedding
- ® One-to-one or limited one-to-many relationships
- © Unbounded one-to-many

- Key tradeoff: Item size vs. multiple reads
« Duplication

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

! oy
Denormalization

- Embedding

- ® One-to-one or limited one-to-many relationships
- © Unbounded one-to-many
- Key tradeoff: Item size vs. multiple reads
« Duplication
- Key tradeoff: Faster reads vs. harder / more expensive writes

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

! oy
Denormalization

- Embedding
- ® One-to-one or limited one-to-many relationships
- © Unbounded one-to-many
- Key tradeoff: Item size vs. multiple reads
« Duplication
- Key tradeoff: Faster reads vs. harder / more expensive writes

 |deal: immutable values

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

! oy
Denormalization

- Embedding
- ® One-to-one or limited one-to-many relationships
- © Unbounded one-to-many
- Key tradeoff: Item size vs. multiple reads
« Duplication
- Key tradeoff: Faster reads vs. harder / more expensive writes

 |deal: immutable values
- Benefits:

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

! oy
Denormalization

- Embedding
- ® One-to-one or limited one-to-many relationships
- © Unbounded one-to-many
- Key tradeoff: Item size vs. multiple reads
« Duplication
- Key tradeoff: Faster reads vs. harder / more expensive writes

 |deal: immutable values
- Benefits:

« Reducing number of reads (faster + cheaper)

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

! oy
Denormalization

- Embedding
- ® One-to-one or limited one-to-many relationships
- © Unbounded one-to-many
- Key tradeoff: Item size vs. multiple reads
« Duplication
- Key tradeoff: Faster reads vs. harder / more expensive writes

 |deal: immutable values
- Benefits:

« Reducing number of reads (faster + cheaper)
* Moving reads from sequential to parallel (faster)

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

c. or its affiliates. All rights reserved.

é?USEI'IIX'

'S THE ADVANCED
3 COMPUTING SYSTEMS
ASSOCIATION

EUROPE
SR MIDDLE EAST

CDN_ AFRICA

Advanced Napkin Math
Simon Eskildsen, SRECON, Dublin 2019

Source: Simon Eskildsen, Advanced Napkin Math

aws © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
\-—-;’

https://www.usenix.org/conference/srecon19emea/presentation/eskildsen

Napkin math + DynamoDB base rates

Performance

I
Performance base rates

« Client-side operation latency:
- Getltem/Query: ~5 ms
« Putltem: ~20 ms
« Transaction: 100 ms
« Limits:
« Queryresponse: 1 MB per request
« Hot items: 1000 WCU per second and 3000 RCU per second

aWS’ © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

Napkin math + DynamoDB base rates

Performance

Napkin math + DynamoDB base rates
Performance

Billing

I
DynamoDB billing background

« Traditional databases: CPU, memory, IOPS
« DynamoDB:

Read Capacity Unit (RCU)

Write Capacity Unit (WCU)

| Billing base rates

« (Capacity units:
- RCU: Up to 4 KB of data read

Cut in half if not strongly consistent read

- WCU: Up to 1 KB of data written

« Prices:
« 12.5¢ per 1 million RCUs
« 67.5¢ per 1 million WCUs
- $0.25 per GB-month

| Billing base rates

« (Capacity units:
- RCU: Up to 4 KB of data read

Cut in half if not strongly consistent read

- WCU: Up to 1 KB of data written
« Prices*:

« 12.5¢ per 1 million RCUs

« 67.5¢ per 1 million WCUs

- $0.25 per GB-month

* us-east-1 on-demand numbers

Napkin math + DynamoDB base rates
Performance

Billing

Napkin math + DynamoDB implications

Performance + billing are separate concerns

a

Q
E

)

Q

(%))

=

o

Q.

(2]

Q

(add

Concurrent queries
aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

S

a

Q
E

)

Q

(%))

=

o

Q.

(2]

Q

(add

Concurrent queries
aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

S

a

Q
E

)

Q

(%))

=

o

Q.

(2]

Q

(add

Concurrent queries
aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

S

I
Performance base rates

« Client-side operation latency:
- Getltem/Query: ~5 ms
« Putltem: ~20 ms
« Transaction: 100 ms
« Limits:
« Queryresponse: 1 MB per request
« Hot items: 1000 WCU per second and 3000 RCU per second

aWS’ © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

Napkin math + DynamoDB implications

Performance + billing are separate concerns

Napkin math + DynamoDB implications
Performance + billing are separate concerns

DynamoDB pricing should affect how you build applications

| Billing base rates

« (Capacity units:
- RCU: Up to 4 KB of data read (cut in half if not strongly consistent read)
- WCU: Up to 1 KB of data written
« Prices*:
« 12.5¢ per 1 million RCUs
« 67.5¢ per 1 million WCUs
- $0.25 per GB-month

* us-east-1 numbers

Advanced napkin math: WCU + RCU multipliers

e |tem size
« Secondary indexes
« Transactions

 Global tables

« Consistent read

Mind your multipliers!

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

I
Mind your multipliers

- Review item sizes carefully
- Remove unused attributes
- Compress large values (or send to Amazon S3)

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

I
Mind your multipliers

- Review item sizes carefully

I
Mind your multipliers

- Review item sizes carefully
- Limit secondary indexes

aWS’ © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

Mind your multipliers

- Review item sizes carefully

- Limit secondary indexes
« Do you need a secondary index? Writes are ~20x more than reads

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

Mind your multipliers

- Review item sizes carefully

- Limit secondary indexes
« Do you need a secondary index? Writes are ~20x more than reads
- Use projections to limit size of items in the index

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

I
Mind your multipliers

- Review item sizes carefully
- Limit secondary indexes

aWS’ © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

Mind your multipliers

- Review item sizes carefully
- Limit secondary indexes
« Limit transactions

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

Mind your multipliers

- Review item sizes carefully

- Limit secondary indexes

« Limit transactions

- Ensure that you need global tables

aWS’ © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

Mind your multipliers

- Review item sizes carefully

- Limit secondary indexes

« Limit transactions

- Ensure that you need global tables
« Don't use consistent reads

aWS’ © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

Napkin math + DynamoDB implications
Performance + billing are separate concerns

DynamoDB pricing should affect how you build applications

c. or its affiliates. All rights reserved.

Inserts

|
Updates [Batch of records]
Deletes
> —p
|
aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

N1

I
DynamoDB Streams use cases

Solving the dual-write problem

| The dual-write problem

Putitem
CustomerEmail: ...

Orderld: ...
>

PutEvents
Type: OrderCreated
Orderld:

B aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
I p—

The dual-write problem

Putitem NERS
CustomerEmail: ... Updates
Orderld: ... Deletes
= =
[Batch of records]
PutEvents
Type: OrderCreated
Orderld:
<
aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

I\.__;;

I
Tips for DynamoDB Streams

+ Clean up your events before pushing elsewhere
Consumer stream limit
Raw event format

aWS’ © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

"eventID":"c4ca4238a0b923820dcc509a6f75849b",
"eventName": "INSERT",

"eventVersion": "1.1", {
"eventSource": "aws:dynamodb", "type": "USER_CREATED",
"awsRegion": "us-east-1", "timestamp": 1628899200000,
"dynamodb" : "version": "1.0",
{ “daitaiey
"ApproximateCreationDateTime": 1628899200, "userId": "123456789",
"Keys": tnamel: oS DeeEs
{ "id": { "S": "123456789" } }, "email": "john.doe@example.com",
"NewImage": { "createdAt": 1628899200000 },
"id": { "S": "123456789" }, }

"name": { "S": "John Doe" }, i

?
"email": { "S": "john.doe@example.com" }, etadata’: {

"createdAt": { "N": "1628899200" } }, "SOU?Ce"f "dyTamoi?lz
"SequenceNumber": "4421584500000000017..." s e :
"SizeBytes": 26, streamId": "4421584500000000017450439091
"StreamViewType": "NEW_AND_OLD_IMAGES" }, }
"eventSourceARN": "arn:aws:dynamodb:..." } }
}
}
aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

N1

I
Tips for DynamoDB Streams

+ Clean up your events before pushing elsewhere
Consumer stream limit
Raw event format

aWS’ © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

I
Tips for DynamoDB Streams

+ Clean up your events before pushing elsewhere
Consumer stream limit
Raw event format

- Understand stream processing mechanics + failure modes

aWS’ © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

I
Tips for DynamoDB Streams

+ Clean up your events before pushing elsewhere
Consumer stream limit
Raw event format

- Understand stream processing mechanics + failure modes
Kafka/Amazon Kinesis

aWS’ © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

I
Tips for DynamoDB Streams

+ Clean up your events before pushing elsewhere
Consumer stream limit
Raw event format

- Understand stream processing mechanics + failure modes
Kafka/Amazon Kinesis

- Consider your stream implementation carefully

aWS’ © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

I
Tips for DynamoDB Streams

+ Clean up your events before pushing elsewhere
Consumer stream limit
Raw event format

- Understand stream processing mechanics + failure modes
Kafka/Amazon Kinesis

- Consider your stream implementation carefully

DynamoDB Streams: fully managed, better guarantees, but max 2 consumers

aWS’ © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

I
Tips for DynamoDB Streams

+ Clean up your events before pushing elsewhere
« Consumer stream limit
« Raw event format

- Understand stream processing mechanics + failure modes
- Kafka/Amazon Kinesis

- Consider your stream implementation carefully
- DynamoDB Streams: fully managed, better guarantees, but max 2 consumers
« Kinesis Streams: more consumers but more management + cost

aWS’ © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

I
DynamoDB Streams use cases

Solving the dual-write problem

I
DynamoDB Streams use cases

Solving the dual-write problem

Exporting to secondary system

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

Good at: Bad at:

« Classic OLTP workloads Flexible workloads
Small reads + writes - Analytics/aggregations
Transactions « Complex filtering
Conditional writes « Full-text search

Low latency/high availability

aWS’ © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

|
> >
|

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

Complexities with syncing to external system

Initial export

How to get initial data into
external system?

aws © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
\-—-;’

DynamoDB export

DynamoDB data export to Amazon S3: how it
works

PDF | R55

DynamoDB export to S3 is a fully managed solution for exporting your DynamoDB data to an Amazon
S3 bucket at scale. Using DynamoDB export to S3, you can export data from an Amazon DynamoDB

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

1. Enable DynamoDB Streams

4. Consume
stream

|
> >
|

>
3. Load to external

2. Export to Amazon S3
system

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

Complexities with syncing to external system

Initial export

Complexities with syncing to external system

Initial export

OLTP/OLAP impedance mismatch

AWS News Blog

Amazon DynamoDB zero-ETL integration
with Amazon OpenSearch Service is now
available

by Channy Yun (F4%) | on 28 NOV 2023 | in Amazon DynamoDB, Amazon
OpenSearch Service, Analytics, Announcements, AWS re:lnvent, Database,
Launch, News | Permalink | ™ Share

» 0:00/0:00

Voiced by Amazon Polly

Today, we are announcing the general availability of Amazon DynamoDB
zero-ETL integration with Amazon OpenSearch Service, which lets you

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

1. Enable DynamoDB Streams

4. Consume
stream

|
> >
|

>
3. Load to external

2. Export to Amazon S3
system

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

I
DynamoDB Streams use cases

Solving the dual-write problem

Exporting to secondary system

I
DynamoDB Streams use cases

Solving the dual-write problem
Exporting to secondary system

Triggers + stored procedures

| _ . : ,
Trigger use case: Array indexing

- Example: Issue tracking system
« Projects have issues
« Issues have tags

Release version
Type (feature vs. bugfix vs. enhancement vs. tech debt vs. documentation)
Component (frontend vs. backend vs. database vs. auth)

- Goal: Allow for tag-based search

feature + auth + sprint-23

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

Primary key

Partition key: Project Sort key: IssuelD

NoSQLWorkbench

NWB-123

DD-1242

DD-1258

DynamoDash

DD-2891

DD-3219

aws

S

Title

Add UUIDVY support

Title

Login page crashes on
Safari mobile

Title

Add OAuth support for
Google S50

Title

Optimize database queries
for dashboard

Title

Add table capacity cost
forecasting

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Description

Users want to use UUIDVY in their
models ...

Description

Users report white screen after
clicking login button ...

Description

Implement Google as additional S50
provider...

Description

Dashboard loading times exceeding
3s in production

Description

Add predictive analytics for
DynamoDB table capacity costs ...

Attributes

Status

closed

Status

in-progress

Status

ready-for-
review

Status

open

Status

open

CreatedAt

2022-02-
14T08:30:00Z

CreatedAt

2024-01-
15T08:30:00Z

CreatedAt

2024-01-
16T10:00:00

CreatedAt

2024-01-
17T09:15:00Z

CreatedAt

2024-01-
18T11:45:00Z

CreatedBy

amrith_kuma
r

CreatedBy

alex_debrie

CreatedBy

joe_idziorek

CreatedBy

alex_debrie

CreatedBy

alex_debrie

Tags

["release-v3.0", "user-experience”,
"enhancement"]

Tags

["bug", "frontend”, "p0", "customer-reported"”,
"ios", "auth"]

Tags

["feature", "auth", "sprint-23", "team-atlas"]

Tags

["performance”, "backend", "database”,
"production”]

Tags

["feature", "cost-optimization”, "sprint-24",
"team-atlas", "backend", "analytics"]

Can | brute force it?

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

I
Issue tracking: Napkin math

I
Issue tracking: Napkin math

« Issue item size: 1-5 KB

I
Issue tracking: Napkin math

« |ssue item size: 1-5 KB
« Issues per project:

I
Issue tracking: Napkin math

« |ssue item size: 1-5 KB
« Issues per project:
Median: 1000

aWS’ © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

I
Issue tracking: Napkin math

« [ssue item size: 1-5 KB
« Issues per project:
Median: 1000
P95: >10,000

aWS’ © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

I
Issue tracking: Napkin math

« [ssue item size: 1-5 KB
« Issues per project:
Median: 1000
P95: >10,000

Brute-force calculations:

aWS’ © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

I
Issue tracking: Napkin math

« [ssue item size: 1-5 KB
« Issues per project:
Median: 1000
P95: >10,000

Brute-force calculations:
Median: 2 KB * 1000 == 2 MB (2 requests + 500 RCUs)

aWS’ © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

I
Issue tracking: Napkin math

« [ssue item size: 1-5 KB
« Issues per project:
Median: 1000
P95: >10,000

Brute-force calculations:
Median: 2 KB * 1000 == 2 MB (2 requests + 500 RCUs)

- P95:5KB * 10,000 == 50 MB (50 requests + 12,500 RCUs)

aWS’ © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

I
Issue tracking: Napkin math

« [ssue item size: 1-7
« Issues per proje
Median: 1000
P95: >10,000

Brute-force calcula
Median: 2 KB * 10C ' + 500 RCUs)
P95: 5 KB * 10,000 == 5 quests + 12,500 RCUs)

Array indexing with streams

Create/Update
Issue
- =
Issues table
[Batch of records]

Insert/Update

IssuesByTags

<
IssuesByTag table
aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

I_;:

aws

S

Partition key: ProjectTag

NoSQLWorkbecnh#user-experience

Primary key

Sort key: CreatedAt

2022-02-14T08:30:00Z

Attributes

IssuelD

NWB-123

DynamoDash#feature

2024-01-15T10:00:00

2024-01-18T11:45:00Z

IssuelD

DD-1258

IssuelD

DD-3219

DynamoDash#sprint-23

2024-01-18T11:45:00Z

IssuelD

DD-3219

DynamoDash#auth

DynamoDash#performance

2024-01-18T11:45:00Z

IssuelD

DD-3219

2024-01-17T09:15:002

Find issues with tags: feature + auth + sprint-23

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

IssuelD

DD-2891

l
Issue tracking: Napkin math part 2

« Tags per query: 3
 |ssue item size: 200 bytes
« |ssues per tag

Median: 10
P95: 200

Calculations:
Median: 200 * 10 == 2 KB (1 RCU) * 3 requests == 3 RCUs
- P95:200 * 200 == 40 KB (10 RCUs) * 3 requests == 30 RCUs

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved
S

l : B
Issue tracking + denormalization

Embedding

Primary key

Partition key: Project Sort key: IssuelD

NoSQLWorkbench

NWB-123

DD-1242

DD-1258

DynamoDash

DD-2891

DD-3219

aws

S

Title

Add UUIDVY support

Title

Login page crashes on
Safari mobile

Title

Add OAuth support for
Google S50

Title

Optimize database queries
for dashboard

Title

Add table capacity cost
forecasting

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Description

Users want to use UUIDVY in their
models ...

Description

Users report white screen after
clicking login button ...

Description

Implement Google as additional S50
provider...

Description

Dashboard loading times exceeding
3s in production

Description

Add predictive analytics for
DynamoDB table capacity costs ...

Attributes

Status

closed

Status

in-progress

Status

ready-for-
review

Status

open

Status

open

CreatedAt

2022-02-
14T08:30:00Z

CreatedAt

2024-01-
15T08:30:00Z

CreatedAt

2024-01-
16T10:00:00

CreatedAt

2024-01-
17T09:15:00Z

CreatedAt

2024-01-
18T11:45:00Z

CreatedBy

amrith_kuma
r

CreatedBy

alex_debrie

CreatedBy

joe_idziorek

CreatedBy

alex_debrie

CreatedBy

alex_debrie

Tags

["release-v3.0", "user-experience”,
"enhancement"]

Tags

["bug", "frontend”, "p0", "customer-reported"”,
"ios", "auth"]

Tags

["feature", "auth", "sprint-23", "team-atlas"]

Tags

["performance”, "backend", "database”,
"production”]

Tags

["feature", "cost-optimization”, "sprint-24",
"team-atlas", "backend", "analytics"]

l : B
Issue tracking + denormalization

Embedding

l : B
Issue tracking + denormalization

Embedding
Duplication

aws

S

Partition key: ProjectTag

NoSQLWorkbecnh#user-experience

DynamoDash#feature

DynamoDash#sprint-23

DynamoDash#auth

DynamoDash#performance

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Primary key

Sort key: CreatedAt

2022-02-14T08:30:00Z

2024-01-15T10:00:00

2024-01-18T11:45:00Z

2024-01-18T11:45:00Z

2024-01-18T11:45:00Z

2024-01-17T09:15:002

Attributes

IssuelD

NWB-123

IssuelD

DD-1258

IssuelD

DD-3219

IssuelD

DD-3219

IssuelD

DD-3219

IssuelD

DD-2891

l : B
Issue tracking + denormalization

Embedding
Duplication

I : B
Issue tracking + denormalization

Embedding
Duplication

Further consideration — how much to duplicate?

aws

S

Partition key: ProjectTag

NoSQLWorkbecnh#user-experience

DynamoDash#feature

DynamoDash#sprint-23

DynamoDash#auth

DynamoDash#performance

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Primary key

Sort key: CreatedAt

2022-02-14T08:30:00Z

2024-01-15T10:00:00

2024-01-18T11:45:00Z

2024-01-18T11:45:00Z

2024-01-18T11:45:00Z

2024-01-17T09:15:002

Attributes

IssuelD

NWB-123

IssuelD

DD-1258

IssuelD

DD-3219

IssuelD

DD-3219

IssuelD

DD-3219

IssuelD

DD-2891

Primary key
Attributes
Partition key: ProjectTag Sort key: CreatedAt

IssuelD Title Description Status CreatedBy Tags
NoSQLWorkbecnh#user- 2022-02-
experience 14T08:30:002 Users want to use UUIDV7 in their amrith_kum ['release-v3.0", "user-experience”,

NWB-123 Add UUIDVT support models ... closed ar "enhancement"]

IssuelD Title Description Status CreatedBy Tags
2024-01-
15T10:00:00 Add OAuth support for Implement Google as additional ready-for-

["feature”, "auth”, "sprint-23", "team-
DD-1253 Google S50 SSO provider ... review

joe_idziorek atlas"]

DynamoDash#feature
IssuelD Title Description Status CreatedBy Tags
2024-01-

18711:45:002 Add table capacity cost Add predictive analytics for

["feature”, "cost-optimization”, "sprint-
DD-3219 forecasting DynamoDB table capacity costs ...

open aleyfiebrie 23" "team-atlas", "backend", "analytics"]

IssuelD Title Description Status CreatedBy Tags
R024-01-
T8¢ 1:45:00Z Add table capacity cost Add predictive analytics for
DD-3219 ; .
forecasting DynamoDB table capacity costs ...

DynamoDash#sprint-23 . .o S g ow
["feature”, "cost-optimization”, "sprint-

alex_debrie 23" "team-atlas", "backend", "analytics"]
IssuelD Title Description j CreatedBy Tags
2024-01-
18T11:45:00Z Add table capacity cost Add predictive analytics for
DD-3219 . .
forecasting DynamoDB table capacity cogf¥ ...

DynamoDash#auth . .o f g ow
["feature”, "cost-optimization”, "sprint-

open alex_cebrle 23", "team-atlas", "backend", "analytics"]
suelD Title Description Status CreatedBy Tags
2024-01-
17T09:15:00Z Optimize database Dashboard loadi imes . ['performance”, "backend", "database”,
DD-2%1 , i , \ alex_debrie " i
queries for dashboard exceeding 3s ingfroduction ... production"]

DynamoDash#performance

Find issues with tags: feature + auth + sprint-23

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

l : B
Issue tracking + denormalization

« More duplication:
- Benefits: Fewer read operations/lower latency
- Downside: Higher write cost/maintenance

aWS’ © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Other trigger + stored procedure use cases

Maintaining aggregations
« Tracking version histories

Hierarchical rollups

aWS’ © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

I
DynamoDB Streams use cases

Solving the dual-write problem
Exporting to secondary system

Triggers + stored procedures

c. or its affiliates. All rights reserved.

I :
Make it Dynamo

« Basics first

| Tips for all modeling styles

- Design for your access patterns
Use meaningful primary keys
Don’t needlessly overload item collections

« Think about your writes early
Use conditional writes

« Flatten hierarchies

Denormalize where prudent

aWS’ © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

I :
Make it Dynamo

« Basics first

I :
Make it Dynamo

« Basics first

« Use the building blocks

aWS’ © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

Array indexing with streams

Create/Update
Issue
- =
Issues table
[Batch of records]

Insert/Update

IssuesByTags

<
IssuesByTag table
aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

I_;:

l
Issue tracking: Napkin math part 2

« Tags per query: 3
 |ssue item size: 200 bytes
« |ssues per tag

Median: 10
P95: 200

Calculations:
Median: 200 * 10 == 2 KB (1 RCU) * 3 requests == 3 RCUs
- P95:200 * 200 == 40 KB (10 RCUs) * 3 requests == 30 RCUs

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved
S

I : B
Issue tracking + denormalization

Embedding
Duplication

Further consideration — how much to duplicate?

I :
Make it Dynamo

« Basics first

« Use the building blocks

aWS’ © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

Make it Dynamo

- Basics first
« Use the building blocks

« Secondary system when necessary

aWS’ © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

1. Enable DynamoDB Streams

4. Consume
stream

|
> >
|

>
3. Load to external

2. Export to Amazon S3
system

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

Make it Dynamo

- Basics first
« Use the building blocks

« Secondary system when necessary

aWS’ © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

Make it Dynamo

- Basics first
« Use the building blocks
« Secondary system when necessary

- Split + sort are surprisingly powerful!

aWS’ © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

Primary key

Partition key: Username

Grouped by
partition key

alexdebrie

product_joe

algo_amrith

Sort key: Orderid

Ordered by sort key

PTHNZNG5QDMB4014EWZ0R54VY4

TJCFeZIATXZRXTEGTDKXT111Y

TIWIMSACQEBGNEB263Z7X4857R

OTKSRMS988AHOPTZYHPAKZS3FF

0TJ2YKVTEeS0CZEDBXSYCZXVOSE

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

S

OrderCreatedAt

2024-02-06T16:54:55.981Z

OrderCreatedAt

2024-11-12T03:34:07.450Z

OrderCreatedAt

2025-05-14T14:48:19.6072Z

OrderCreatedAt

2025-09-22T11:52:28.168Z

OrderCreatedAt

2024-07-16T20:31:09.5292Z

Attributes

OrderStatus

Cancelled

OrderStatus

Delivered

OrderStatus

Placed

OrderStatus

Delivered

OrderStatus

Delivered

OrderAmount

34.99

OrderAmount

172.14

OrderAmount

94.35

OrderAmount

237.44

OrderAmount

371.64

I
Split + sort

« Group by high cardinality

« TenantlD, UserEmail, DevicelD
 Sort by meaningful value

- Timestamp, Versionld, ULID/UUIDv7

This can be used in surprising ways!
« Geohashing
« IP lookup

aWS’ © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Make it Dynamo

- Basics first
« Use the building blocks
« Secondary system when necessary

- Split + sort are surprisingly powerful!

aWS’ © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

' ey Please complete the session
y u ") _Diz@ survey in the mobile app

Alex DeBrie

@alexbdebrie
alexdebrie1@gmail.com

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

	Layouts
	Slide 1
	Slide 2: Advanced data modeling with Amazon DynamoDB
	Slide 3: Previously at re:Invent
	Slide 4: Related talks
	Slide 5: Agenda
	Slide 6: Alex DeBrie
	Slide 7: DynamoDB background
	Slide 8
	Slide 9: Mechanical sympathy is when you use a tool or system with an understanding of how it operates best.
	Slide 10: Key characteristics
	Slide 11: DynamoDB – High level architecture
	Slide 12: Key characteristics
	Slide 13: Key characteristics
	Slide 14: Key characteristics
	Slide 15: Key characteristics
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20: Partitioning + the DynamoDB API
	Slide 21
	Slide 22
	Slide 23
	Slide 24: Secondary indexes
	Slide 25
	Slide 26: What you don’t need to know about DynamoDB
	Slide 27: What you do need to know about DynamoDB
	Slide 28: Data modeling basics
	Slide 29
	Slide 30: Before you design your data model
	Slide 31
	Slide 32
	Slide 33: Before you design your data model
	Slide 34: Before you design your data model
	Slide 35: Before you design your data model
	Slide 36
	Slide 37: Use the basics!
	Slide 38
	Slide 39: Use the basics!
	Slide 40: Use the basics!
	Slide 41
	Slide 42: Use the basics!
	Slide 43: Use the basics!
	Slide 44: Use the basics!
	Slide 45: Flexibility vs. efficiency
	Slide 46
	Slide 47: Flexibility vs. efficiency
	Slide 48: Flexibility vs. efficiency
	Slide 49: Flexibility vs. efficiency
	Slide 50: Tips for all modeling styles
	Slide 51
	Slide 52: Tips for all modeling styles
	Slide 53: Tips for all modeling styles
	Slide 54
	Slide 55
	Slide 56: Tips for all modeling styles
	Slide 57: Tips for all modeling styles
	Slide 58: Tips for all modeling styles
	Slide 59: Tips for all modeling styles
	Slide 60: Tips for all modeling styles
	Slide 61: Denormalization
	Slide 62
	Slide 63: Denormalization
	Slide 64: Denormalization
	Slide 65
	Slide 66: Denormalization
	Slide 67: Denormalization
	Slide 68: Denormalization
	Slide 69: Denormalization
	Slide 70: Denormalization
	Slide 71: Denormalization
	Slide 72: Denormalization
	Slide 73: Denormalization
	Slide 74: Napkin math and DynamoDB
	Slide 75
	Slide 76: Napkin math + DynamoDB base rates
	Slide 77: Performance base rates
	Slide 78: Napkin math + DynamoDB base rates
	Slide 79: Napkin math + DynamoDB base rates
	Slide 80: DynamoDB billing background
	Slide 81: Billing base rates
	Slide 82: Billing base rates
	Slide 83: Napkin math + DynamoDB base rates
	Slide 84: Napkin math + DynamoDB implications
	Slide 85
	Slide 86
	Slide 87
	Slide 88: Performance base rates
	Slide 89: Napkin math + DynamoDB implications
	Slide 90: Napkin math + DynamoDB implications
	Slide 91: Billing base rates
	Slide 92: Advanced napkin math: WCU + RCU multipliers
	Slide 93
	Slide 94: Mind your multipliers
	Slide 95: Mind your multipliers
	Slide 96: Mind your multipliers
	Slide 97: Mind your multipliers
	Slide 98: Mind your multipliers
	Slide 99: Mind your multipliers
	Slide 100: Mind your multipliers
	Slide 101: Mind your multipliers
	Slide 102: Mind your multipliers
	Slide 103: Napkin math + DynamoDB implications
	Slide 104: Amazon DynamoDB Streams
	Slide 105
	Slide 106: DynamoDB Streams use cases
	Slide 107: The dual-write problem
	Slide 108: The dual-write problem
	Slide 109: Tips for DynamoDB Streams
	Slide 110
	Slide 111: Tips for DynamoDB Streams
	Slide 112: Tips for DynamoDB Streams
	Slide 113: Tips for DynamoDB Streams
	Slide 114: Tips for DynamoDB Streams
	Slide 115: Tips for DynamoDB Streams
	Slide 116: Tips for DynamoDB Streams
	Slide 117: DynamoDB Streams use cases
	Slide 118: DynamoDB Streams use cases
	Slide 119
	Slide 120: Good at:
	Slide 121
	Slide 122: Complexities with syncing to external system
	Slide 123
	Slide 124: DynamoDB export
	Slide 125
	Slide 126: Complexities with syncing to external system
	Slide 127: Complexities with syncing to external system
	Slide 128
	Slide 129
	Slide 130: DynamoDB Streams use cases
	Slide 131: DynamoDB Streams use cases
	Slide 132: Trigger use case: Array indexing
	Slide 133
	Slide 134
	Slide 135: Issue tracking: Napkin math
	Slide 136: Issue tracking: Napkin math
	Slide 137: Issue tracking: Napkin math
	Slide 138: Issue tracking: Napkin math
	Slide 139: Issue tracking: Napkin math
	Slide 140: Issue tracking: Napkin math
	Slide 141: Issue tracking: Napkin math
	Slide 142: Issue tracking: Napkin math
	Slide 143: Issue tracking: Napkin math
	Slide 144: Array indexing with streams
	Slide 145
	Slide 146: Issue tracking: Napkin math part 2
	Slide 147: Issue tracking + denormalization
	Slide 148
	Slide 149: Issue tracking + denormalization
	Slide 150: Issue tracking + denormalization
	Slide 151
	Slide 152: Issue tracking + denormalization
	Slide 153: Issue tracking + denormalization
	Slide 154
	Slide 155
	Slide 156: Issue tracking + denormalization
	Slide 157: Other trigger + stored procedure use cases
	Slide 158: DynamoDB Streams use cases
	Slide 159: Make it Dynamo
	Slide 160: Make it Dynamo
	Slide 161: Tips for all modeling styles
	Slide 162: Make it Dynamo
	Slide 163: Make it Dynamo
	Slide 164: Array indexing with streams
	Slide 165: Issue tracking: Napkin math part 2
	Slide 166: Issue tracking + denormalization
	Slide 167: Make it Dynamo
	Slide 168: Make it Dynamo
	Slide 169
	Slide 170: Make it Dynamo
	Slide 171: Make it Dynamo
	Slide 172
	Slide 173: Split + sort
	Slide 174: Make it Dynamo
	Slide 175

