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• 2023: Airline reservations (complex filtering, maintaining 
constraints)

• 2022: MMORPG (architecture, constraints, transactions)

• 2021: Ecommerce (primary keys, write operations)

Previously at re:Invent
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• DAT305: Data modeling core concepts for Amazon DynamoDB

• DAT406: Deep dive into Amazon DynamoDB

• DAT419: An insider’s look into architecture choices for 
Amazon DynamoDB

Related talks
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• Background 

• Data modeling basics

• DynamoDB + napkin math

• Using Amazon DynamoDB Streams

• Make it Dynamo

Agenda
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Alex DeBrie

• AWS Data Hero

• Independent consultant

• Author, The DynamoDB Book

dynamodbbook.com
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DynamoDB background
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Mechanical sympathy is when 
you use a tool or system with 
an understanding of how it 
operates best. 

AWS Well-Architected Framework 

https://wa.aws.amazon.com/wellarchitected/2020-07-
02T19-33-23/wat.concept.mechanical-sympathy.en.html

https://wa.aws.amazon.com/wellarchitected/2020-07-02T19-33-23/wat.concept.mechanical-sympathy.en.html
https://wa.aws.amazon.com/wellarchitected/2020-07-02T19-33-23/wat.concept.mechanical-sympathy.en.html
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Key characteristics

• Fully managed and proprietary to AWS
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DynamoDB – High level architecture
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Primary key
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Primary key
All access through primary key
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Primary key

Grouped by 

partition key

Ordered by sort key
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Partitioning + the DynamoDB API

• Items spread across partitions by partition key

• Single-item actions

• Basic CRUD – PutItem, GetItem, UpdateItem, DeleteItem

• Requires full primary key

• All write operations

• Query operation (composite primary key only)

• Fetch many

• Requires partition key; sort key optional

• Scan

• Fetch all (use sparingly)
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Primary key
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Secondary indexes

• Fully managed copies of your data

• Enable additional read-based access patterns

• Two kinds:

• Global secondary indexes (prefer)

• Local secondary indexes (understand before using!)
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What you don’t need to know about DynamoDB

• Paxos vs. Raft

• Two-phase vs. three-phrase commit

• Memory buffer configuration settings
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What you do need to know about DynamoDB

• Partitions + importance of primary key

• API structure

• Single-item actions vs. query vs. scan

• Secondary indexes

• Billing

• Limits

• Pagination mechanics

• Consistency model
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Data modeling basics
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First, understand your needs
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Before you design your data model

• Know your domain

• What are your constraints?

• What’s your data distribution?

• How big are your items?

• Know your access patterns
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Before you design your data model

• Know your domain

• What are your constraints?

• What’s your data distribution?

• How big are your items?

• Know your access patterns

• Know the DynamoDB basics

• Primary key + API + secondary indexes
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Then, design your table for your needs
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Use the basics!

• Single-item actions
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Use the basics!

• Single-item actions

• Query for "List" operations

• Secondary indexes for additional read-based patterns

• Transactions
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Flexibility vs. efficiency 

• Why are you using DynamoDB?

• Predictable performance at enormous scale?

• Migrating a legacy application to DynamoDB?
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Example of modeling relational data in DynamoDB

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/bp-modeling-nosql-B.html
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Flexibility vs. efficiency 

• Why are you using DynamoDB?

• Predictable performance at enormous scale?

• Migrating a legacy application to DynamoDB?

• Integration with AWS AppSync/GraphQL?

• Ease of use in serverless architecture?
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Tips for all modeling styles

• Design for your access patterns

• Use meaningful primary keys
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astute_alex
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Friendships

Inventory

Quests

User

astute_alexastute_alex
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Friendships

Quests

User + Inventory

astute_alex

astute_alex#QUEST

astute_alex#FRIENDSHIP
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Tips for all modeling styles

• Design for your access patterns
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Tips for all modeling styles

• Design for your access patterns

• Use meaningful primary keys

• Don’t needlessly overload item collections

• Think about your writes early

• Use conditional writes

• Flatten hierarchies

• Denormalize where prudent
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Denormalization

• Embedding

•  One-to-one or limited one-to-many relationships
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Denormalization

• Embedding

•  One-to-one or limited one-to-many relationships

•  Unbounded one-to-many 

• Key tradeoff: Item size vs. multiple reads

• Duplication

• Key tradeoff: Faster reads vs. harder / more expensive writes

• Ideal: immutable values

• Benefits:

• Reducing number of reads (faster + cheaper)

• Moving reads from sequential to parallel (faster)
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Napkin math and DynamoDB
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Advanced Napkin Math

Simon Eskildsen, SRECON, Dublin 2019

Source: Simon Eskildsen, Advanced Napkin Math

https://www.usenix.org/conference/srecon19emea/presentation/eskildsen
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Napkin math + DynamoDB base rates

• Performance



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Performance base rates
• Client-side operation latency:

• GetItem/Query: ~5 ms

• PutItem: ~20 ms

• Transaction: 100 ms

• Limits:

• Query response: 1 MB per request

• Hot items: 1000 WCU per second and 3000 RCU per second
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Napkin math + DynamoDB base rates

• Performance

• Billing
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DynamoDB billing background

• Traditional databases: CPU, memory, IOPS

• DynamoDB:

• Read Capacity Unit (RCU)

• Write Capacity Unit (WCU)
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Billing base rates

• Capacity units:

• RCU: Up to 4 KB of data read

• Cut in half if not strongly consistent read

• WCU: Up to 1 KB of data written

• Prices:

• 12.5¢ per 1 million RCUs

• 67.5¢ per 1 million WCUs

• $0.25 per GB-month
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Billing base rates

• Capacity units:

• RCU: Up to 4 KB of data read

• Cut in half if not strongly consistent read

• WCU: Up to 1 KB of data written

• Prices*:

• 12.5¢ per 1 million RCUs

• 67.5¢ per 1 million WCUs

• $0.25 per GB-month

* us-east-1 on-demand numbers
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Napkin math + DynamoDB base rates

• Performance

• Billing
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Napkin math + DynamoDB implications

• Performance + billing are separate concerns
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Performance base rates
• Client-side operation latency:

• GetItem/Query: ~5 ms

• PutItem: ~20 ms

• Transaction: 100 ms

• Limits:

• Query response: 1 MB per request

• Hot items: 1000 WCU per second and 3000 RCU per second
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Napkin math + DynamoDB implications

• Performance + billing are separate concerns

• DynamoDB pricing should affect how you build applications
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Billing base rates

• Capacity units:

• RCU: Up to 4 KB of data read (cut in half if not strongly consistent read)

• WCU: Up to 1 KB of data written

• Prices*:

• 12.5¢ per 1 million RCUs

• 67.5¢ per 1 million WCUs

• $0.25 per GB-month

* us-east-1 numbers
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Advanced napkin math: WCU + RCU multipliers

• Item size

• Secondary indexes

• Transactions

• Global tables

• Consistent read

Larger items require more resources

More writes

Coordination

Replication infra + conflict resolution

Requires routing to leader
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Mind your multipliers!
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Mind your multipliers

• Review item sizes carefully

• Remove unused attributes

• Compress large values (or send to Amazon S3)
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Mind your multipliers

• Review item sizes carefully

• Limit secondary indexes

• Do you need a secondary index? Writes are ~20x more than reads
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Mind your multipliers

• Review item sizes carefully

• Limit secondary indexes

• Do you need a secondary index? Writes are ~20x more than reads

• Use projections to limit size of items in the index
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Mind your multipliers

• Review item sizes carefully

• Limit secondary indexes
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Mind your multipliers

• Review item sizes carefully

• Limit secondary indexes
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Mind your multipliers

• Review item sizes carefully

• Limit secondary indexes

• Limit transactions

• Ensure that you need global tables
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Mind your multipliers

• Review item sizes carefully

• Limit secondary indexes

• Limit transactions

• Ensure that you need global tables

• Don’t use consistent reads



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Napkin math + DynamoDB implications

• Performance + billing are separate concerns

• DynamoDB pricing should affect how you build applications



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Amazon DynamoDB Streams
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Inserts

Updates

Deletes
[Batch of records]
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DynamoDB Streams use cases

• Solving the dual-write problem
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The dual-write problem

PutItem

CustomerEmail: …

OrderId: …

PutEvents

Type: OrderCreated

OrderId: ….
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The dual-write problem

PutItem

CustomerEmail: …

OrderId: …

Inserts

Updates

Deletes

[Batch of records]

PutEvents

Type: OrderCreated

OrderId: ….
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Tips for DynamoDB Streams

• Clean up your events before pushing elsewhere

• Consumer stream limit

• Raw event format
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{
  "eventID":"c4ca4238a0b923820dcc509a6f75849b",
  "eventName": "INSERT", 
  "eventVersion": "1.1", 
  "eventSource": "aws:dynamodb", 
  "awsRegion": "us-east-1", 
  "dynamodb": 
    { 
     "ApproximateCreationDateTime": 1628899200,
     "Keys": 
       { "id": { "S": "123456789" } }, 
         "NewImage": { 
           "id": { "S": "123456789" }, 
           "name": { "S": "John Doe" }, 
           "email": { "S": "john.doe@example.com" },
           "createdAt": { "N": "1628899200" } },
         "SequenceNumber": "4421584500000000017...", 
         "SizeBytes": 26, 
         "StreamViewType": "NEW_AND_OLD_IMAGES" }, 
         "eventSourceARN": "arn:aws:dynamodb:..." }
    }
}

{ 
  "type": "USER_CREATED", 
  "timestamp": 1628899200000, 
  "version": "1.0", 
  "data": { 
    "userId": "123456789", 
    "name": "John Doe", 
    "email": "john.doe@example.com", 
    "createdAt": 1628899200000 }, 
  },
  "metadata": { 
    "source": "dynamodb", 
    "region": "us-east-1", 
    "streamId": "4421584500000000017450439091" 
  }
}
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Tips for DynamoDB Streams

• Clean up your events before pushing elsewhere

• Consumer stream limit

• Raw event format

• Understand stream processing mechanics + failure modes

• Kafka/Amazon Kinesis

• Consider your stream implementation carefully

• DynamoDB Streams: fully managed, better guarantees, but max 2 consumers

• Kinesis Streams: more consumers but more management + cost
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DynamoDB Streams use cases

• Solving the dual-write problem
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DynamoDB Streams use cases

• Solving the dual-write problem

• Exporting to secondary system
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Good at:

• Classic OLTP workloads

Bad at:

• Flexible workloads

• Small reads + writes

• Transactions

• Conditional writes

• Low latency/high availability

• Analytics/aggregations

• Complex filtering

• Full-text search
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Complexities with syncing to external system

• Initial export
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How to get initial data into 

external system?
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DynamoDB export
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1. Enable DynamoDB Streams

2. Export to Amazon S3 3. Load to external 

system

4. Consume 

stream
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Complexities with syncing to external system

• Initial export

• OLTP/OLAP impedance mismatch
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1. Enable DynamoDB Streams

2. Export to Amazon S3 3. Load to external 

system

4. Consume 

stream
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DynamoDB Streams use cases

• Solving the dual-write problem

• Exporting to secondary system
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DynamoDB Streams use cases

• Solving the dual-write problem

• Exporting to secondary system

• Triggers + stored procedures
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Trigger use case: Array indexing

• Example: Issue tracking system

• Projects have issues

• Issues have tags

• Release version

• Type (feature vs. bugfix vs. enhancement vs. tech debt vs. documentation)

• Component (frontend vs. backend vs. database vs. auth)

• Goal: Allow for tag-based search

• feature + auth + sprint-23
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Can I brute force it?
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Issue tracking: Napkin math

•

•

•

•

•

•
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Issue tracking: Napkin math

• Issue item size: 1–5 KB

• Issues per project:

• Median: 1000

• P95: >10,000

Brute-force calculations:

• Median: 2 KB * 1000 == 2 MB (2 requests + 500 RCUs)

• P95: 5 KB * 10,000 == 50 MB (50 requests + 12,500 RCUs)
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Array indexing with streams

Create/Update

 Issue

[Batch of records]

Insert/Update 

IssuesByTags

Issues table

IssuesByTag table
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Find issues with tags: feature + auth + sprint-23



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Issue tracking: Napkin math part 2

• Tags per query: 3

• Issue item size: 200 bytes

• Issues per tag

• Median: 10

• P95: 200

Calculations:

• Median: 200 * 10 == 2 KB (1 RCU) * 3 requests == 3 RCUs

• P95: 200 * 200 == 40 KB (10 RCUs) * 3 requests == 30 RCUs
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Issue tracking + denormalization

• Embedding

• Duplication

Further consideration – how much to duplicate?



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Find issues with tags: feature + auth + sprint-23
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Issue tracking + denormalization

• More duplication:

• Benefits: Fewer read operations/lower latency

• Downside: Higher write cost/maintenance
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Other trigger + stored procedure use cases

• Maintaining aggregations

• Tracking version histories

• Hierarchical rollups
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DynamoDB Streams use cases

• Solving the dual-write problem

• Exporting to secondary system

• Triggers + stored procedures
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Make it Dynamo
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Make it Dynamo

• Basics first
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Tips for all modeling styles

• Design for your access patterns

• Use meaningful primary keys

• Don’t needlessly overload item collections

• Think about your writes early

• Use conditional writes

• Flatten hierarchies

• Denormalize where prudent
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Make it Dynamo

• Basics first

• Use the building blocks
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Array indexing with streams

Create/Update

 Issue

[Batch of records]

Insert/Update 

IssuesByTags

Issues table

IssuesByTag table
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Issue tracking: Napkin math part 2

• Tags per query: 3

• Issue item size: 200 bytes

• Issues per tag

• Median: 10

• P95: 200

Calculations:

• Median: 200 * 10 == 2 KB (1 RCU) * 3 requests == 3 RCUs

• P95: 200 * 200 == 40 KB (10 RCUs) * 3 requests == 30 RCUs
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Issue tracking + denormalization

• Embedding

• Duplication

Further consideration – how much to duplicate?
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Make it Dynamo

• Basics first

• Use the building blocks

• Secondary system when necessary
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1. Enable DynamoDB Streams

2. Export to Amazon S3 3. Load to external 

system

4. Consume 

stream
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• Basics first
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Make it Dynamo

• Basics first

• Use the building blocks

• Secondary system when necessary

• Split + sort are surprisingly powerful!
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Primary key

Grouped by 

partition key

Ordered by sort key
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Split + sort

• Group by high cardinality

• TenantID, UserEmail, DeviceID

• Sort by meaningful value

• Timestamp, VersionId, ULID/UUIDv7

This can be used in surprising ways!

• Geohashing

• IP lookup



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Make it Dynamo

• Basics first

• Use the building blocks

• Secondary system when necessary

• Split + sort are surprisingly powerful!



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Thank you!
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Please complete the session 
survey in the mobile app

Alex DeBrie

@alexbdebrie

alexdebrie1@gmail.com
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