aws re: Invent

DECEMBER 2 - 6, 2024 | LAS VEGAS, NV

CMP 333

Introducing Amazon Trn2 Instances, featuring Trainium2

Joe Senerchia

Sr Product Manager Amazon

aws

James Bradbury

Distinguished Engineer, Compute Anthropic

Ron Diamant

Sr Principal Engineer Amazon

Agenda

AWS AI Infrastructure and AI Chips

Building Trainium2

Scaling Frontier Models with Anthropic

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Generative AI may be the largest technology transformation since the cloud, and perhaps since the Internet.

Andy Jassy Amazon CEO

AWS Generative AI Stack

APPLICATIONS TO BOOST PRODUCTIVITY

Amazon Q Business

Amazon Q Developer SOFTWARE DEVELOPMENT LIFECYCLE

MODELS AND TOOLS TO BUILD GENERATIVE AI APPS

Amazon Bedrock AMAZON MODELS | PARTNER MODELS

INFRASTRUCTURE TO BUILD AND TRAIN AI MODELS

中級 AWS Trainium AWS Inferentia

HIGH PERFORMANCE COMPUTE

AWS Infrastructure for AI

Innovating at the silicon level

AWS Trainium

AWS Inferentia

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Inf1 Instances

Lowest cost per inference in the cloud for running deep learning models

Inf2 Instances

High performance at the lowest cost per inference for LLMs and diffusion models

Trn1 Instances

Cost-efficient, highperformance training of LLMs and diffusion models

Trn2 Instances

NEW

Highest performing EC2 instances for deep learning and generative AI

AWS AI Chips Powering Al Innovation at Amazon

Search on Amazon

Rufus Al shopping assistant

AWS Trainium and Inferentia customers

Model scaling . . . what's next?

GPT-4

1.76T

GPT-3 175B

~

Why keep scaling?

Scale improves overall intelligence

Scale unlocks new capabilities

Predictable improvement in loss through scaling

Why keep scaling?

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Scaling compute requires next-generation Al infrastructure

AVAILABLE NOW

Amazon EC2 Trn2 Instances

The highest performing EC2 instances for deep learning and generative AI

more compute and 25% **30%** more HBM than the next most powerful EC2 instance, at a lower price

Trainium2 chips in a non-60K blocking, petabit scale UltraClusters

1T+ parameter generative Al model training and inference

aws

Amazon EC2 Trn2 instances powered by AWS Trainium2 THE HIGHEST PERFORMING EC2 INSTANCES FOR DEEP LEARNING AND GENERATIVE AI

HIGH PERFORMANCE

training and inference of trillion+ parameter Generative AI models

BEST PRICE-PERF

for generative AI and deep learning on AWS

UP TO 46 TB/s

of HBM Bandwidth, ideal for memory intensive token generation

Instance size	Trainium2 chips	Chip memory	Chip Memory Bandwidth	vCPUs	Instance Memory	Storage	NeuronLink	EFAv3	Capacity Block Price	3Yr Rl Price
trn2.48xlarge	16	1.5TB	46 TB/s	192	2TB	4x 1.92TB NVMe	1 TB/s	3.2 Tb/s	\$44.70/hr	\$34.39/hr

Building Trainium2

Our most powerful server for machine learning training

unalars

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

TFLOPS

aws

5

TFLOPS

aws

~

Input processing

TFLOPS 🗸

aws

Input processing

TFLOPS

aws

Output generation

Memory bandwidth 🗸

Time

TFLOPS

Memory bandwidth

Memory capacity

Interconnect 🗸

10p10u

AWS designed network fabric delivering 10s of petabits under 10 microseconds

AWS Trainium2

Third-generation chip purpose built for generative AI and ML training

Trainium2 Server

Our most powerful server for ML training

20.8

PFLOPS DENSE COMPUTE

> **4**6 TB/s

HBM BANDWIDTH

TB/s

NeuronLink

Bandwidth

83.2 **PFLOPS**

SPARSE COMPUTE

1.5 TB

3.2

Tb/s EFAv3

HBM CAPACITY

LLM inference performance

LLAMA 3.1 405B ON TRN2

Total Response Time: Llama 3.1 405B

Seconds to Output 100 Tokens; 10,000 Input Tokens; Benchmarking location: AWS-East-2

LLM training performance

TRAIN FASTER WITH TRAINIUM2

Lower cost-to-train

JAX/AXLearn framework, 64 node cluster

AWS Trainium2 UltraServer

2 racks, 4 servers, connected together via NeuronLink-v3 providing the highest performance ML server in EC2

Energy efficient compute

SYSTOLIC ARRAYS FOR OPTIMIZED ARITHMETIC INTENSITY

Arithmetic Intensity (ops/byte)

Parallel processing

Local communication

Data reuse

Optimized power delivery

TRAINIUM1 - LATERAL POWER DELIVERY

T 0 P

BOTTOM

Optimized power delivery

TRAINIUM2 - VERTICAL POWER DELIVERY

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Optimized power delivery

Adoption curves in ML

Manufacturing at scale

Modular and robust design – minimize cables/components

Simple cooling solution

Manufacturing at scale

Modular and robust design – minimize cables/components

Simple cooling solution

Production-line automation

In-fleet scan and pre-flight checks

Neuron SDK integration

AWS SERVICES AND THIRD-PARTY SOFTWARE

Sparse matrix

Sparse matrix

aws

~

Structured K:N sparsity (4x speedup!)

Supported formats: 4:8, 4:12, 4:16

Improves both compute and memory

Example: 4:8 sparsity

4:8 PERFORMS BETTER THAN 2:4

4:8 PERFORMS BETTER THAN 2:4

2:4 Sparsity
4:8 Sparsity

Llama 3.1 8B Accuracy, 2:4 vs 4:8

SCALING NUMBER OF PARAMETERS AT A FRACTION OF THE COMPUTATIONAL COST

SCALING NUMBER OF PARAMETERS AT A FRACTION OF THE COMPUTATIONAL COST

SCALING NUMBER OF PARAMETERS AT A FRACTION OF THE COMPUTATIONAL COST

DROPLESS MOE: BLOCK-SPARSE COMPUTATIONS FOR EFFICIENT MOE

DROPLESS MOE: BLOCK-SPARSE COMPUTATIONS FOR EFFICIENT MOE

https://arxiv.org/pdf/2211.15841

DROPLESS MOE: BLOCK-SPARSE COMPUTATIONS FOR EFFICIENT MOE

Dynamic memory addressing (pick the relevant expert)

NKI kernel for block-sparse computation

Objective: 'Selectively load' only the expert weights that are required.

Neuron Kernel Interface (NKI)

BARE METAL PROGRAMMING OF TRAINIUM DEVICES

aws

import neuronxcc.nki.language as nl

```
def nki_tensor_add_kernel_(a_input, b_input, c_output):
    # Generate tensor indices to index tensors a and b
    ix = nl.arange(128)[:, None]
    iy = nl.arange(512)[None, :]
```

Load input data from device memory (HBM) to on-chip memory (SBUF) # We refer to an indexed portion of a tensor as an intermediate tensor a_tile = nl.load(a_input[ix, iy]) b_tile = nl.load(b_input[ix, iy])

```
# compute a + b
c_tile = a_tile + b_tile
```

store the addition results back to device memory (c_output)
nl.store(c_output[ix, iy], value=c_tile)

Neuron Kernel Interface (NKI)

WHY SHOULD YOU USE NKI?

Invent new operators

Optimize performance

Take full control of the hardware

•••

import neuronxcc.nki.language as nl

def nki_tensor_add_kernel_(a_input, b_input, c_output):
 # Generate tensor indices to index tensors a and b
 ix = nl.arange(128)[:, None]
 iy = nl.arange(512)[None, :]

Load input data from device memory (HBM) to on-chip memory (SBUF) # We refer to an indexed portion of a tensor as an intermediate tensor a_tile = nl.load(a_input[ix, iy]) b_tile = nl.load(b_input[ix, iy])

compute a + b
c_tile = a_tile + b_tile

store the addition results back to device memory (c_output)
nl.store(c_output[ix, iy], value=c_tile)

Neuron Kernel Interface (NKI)

"HELLO WORLD" IN NKI

NKI Manual

•••

import neuronxcc.nki.language as nl

for(ix in range(128)):
 for(iy in range(512)):
 c[ix,iy] = a[ix,iy] + b[ix,iy]

Mamba2 on NKI

ACCELERATING STATE SPACE MODELS

State Space Models (e.g., Mamba) provide an alternative to attention-based language models

Useful for handling very large contexts

Intrinsically sequential \rightarrow requires careful optimization

18x speedup with 77 lines of NKI code!

aws

Mamba on Trainium tutorial

Neuron Profiler

- A non-intrusive trace
 - Always on no "Heisenbugs"
- Instruction-level timing
- Performance bottleneck warnings
- Multi-layer instruction source annotation

6 atrishume Perfetto Canary implements the IForest data structure I designed for fast trace UIs and now every day I'm happy about how fast I can zoom huge

Tristan Hume

traces. 😃

aws

I wrote the blog post 3yrs ago cuz Perfetto zooming was slow, and recently Lalit Maganti at Google made it fast using it!

Neuron Profiler

Image understanding on Trainium, LLaVA

The image features a painting of a dog wearing a hat, possibly a fez, and a cape. The dog is positioned in the center of the painting, with its head tilted to the side. The painting is quite detailed, capturing the dog's facial expression and the intricate design of the hat and cape. The background of the painting is a landscape, adding depth and context to the scene.

Pre-trained on LLaVA-Pretrain; Fine tuned on Llava-instruct-150k

Diffusion models on Trainium, PixArt

ANTHROP\C and Trainium

Powering the next generation of Al development with AWS

Nov 22, 2024 • 3 min read

ANTHROP\C

Leading AI lab and model provider

Founded four years ago by the team that built GPT-3

Claude 3 Opus (in March) and Claude 3.5 Sonnet (in June)

Focus on safety and responsible scaling

Looking for the most costeffective, scalable compute to power our training and inference

The Trainium bet

WHY ARE WE BETTING ON TRAINIUM?

Incredible priceperformance, especially for HBM-intensive workloads

Flexible and programmable chip architecture

Trn2 UltraServers for scaleout training/inference of large models _____

Delivery at scale with world-class datacenter infrastructure

Low-level access like the Neuron Kernel Interface

Fantastic collaboration from Ron and the Annapurna team

Project Rainier

What will it take to train at this scale?

Training on Trn2 UltraServers

Careful attention to parallelism and scaling

Custom kernels with deep hardware optimization

Innovations in reliability and testing

...and lots of Anthropic secret sauce

Claude 3.5 Haiku on Trn2

OFFERING "LATENCY-OPTIMIZED" INFERENCE ON AMAZON BEDROCK

FASTER THAN STANDARD CLAUDE 3.5 HAIKU SKU

OUTPUT TOKENS PER SECOND (OTPS)
0	
0	

Claude.app - 光公C

Created by James Bradbury

How can Claude help you today?

Claude 🤪 Haiku 3.5 Speed SKU 🗸 🛚 😤 Choose style 🗸

Ø

R Activity O Your chats

🕆 Your chats are private until shared

[五1]

TEXT

AP NKI Docs

Add to project knowledge or share your chats to spark ideas, learn from teammates, and discover how your team uses Claude.

NI Pr	oject knowledge + Add Content	
+ Se	et project instructions Optional	
48% of	knowledge capacity used 🛈	
TEXT	transpose2d.rst 2 hours ago	
TEXT	<pre>spmd_tensor_addition.rst 2 hours ago</pre>	
техт	<pre>spmd_multiple_nc_tensor_addi 2 hours ago</pre>	
TEXT	rmsnorm.rst 2 hours ago	
TEXT	matrix_multiplication.rst 2 hours ago	
TEXT	layernorm.rst 2 hours ago	
техт	fused-self-attn.rst 2 hours ago	
TEXT	fused_mamba.rst 2 hours ago · Large file	
TEXT	average_pool2d.rst 2 hours ago	
	tutorials.rst	

aws

JB

Wrap up

Trn2 is available today!

Trn2 innovations deliver highly optimized performance, energy efficiency, and cost efficiency

We're laying the technological foundation, from chips to science, that will power the next generation of foundation models

aws

AWS TRAINIUM AND INFERENTIA SESSIONS AT RE:INVENT 2024

STILL TIME TO LEARN MORE!!

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Thank you!

Please complete the session survey in the mobile app

Joe Senerchia jsenerch@amazon.com

aws

James Bradbury jek@anthropic.com

Ron Diamant diamant@amazon.com

